返回

资料详情(天天资源网)

资料简介

2.5.2 用二分法求方程的近似解(1)宿迁市宿迁中学 解俊渠教学目标:1.通过具体实例理解二分法的概念及其适用条件,并能够根据这样的过程进行实际求解.了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.2.通过本节内容的学习,让学生体会到在现实世界中,等是相对的,而不等是绝对的,这样可以加深对数学的理解.教学重点:用二分法求方程的近似解;教学难点:二分法原理的理解.教学方法:讲授法与合作交流相结合.教学过程:一、问题情境1.情境:(1)复习函数零点的定义以及函数零点存在的条件;(2)给出函数f(x)=lgx+x-3存在零点的区间;2.问题:如何求方程lgx=3-x的近似解?二、学生活动用二分法探求一元二次方程x2-2x-1=0区间(2,3)上的根的近似值.三、建构数学1.对于区间[a,b]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 2.给定精确度,用二分法求函数f(x)零点近似值的步骤:(1)确定f(a)f(b)<0,从而确定零点存在的区间(a,b);(2)求区间(a,b)的中点x1,并计算f(x1);(3)判断零点范围:若f(x1)=0,则x1就是函数f(x)的零点;若f(a)f(x1)<0,则零点x1Î(a,x1),令b=x1,否则令a=x1;(4)判断精确度:若区间两个端点的近似值相同(符合精确度要求),这个近似值即为所求,否则重复(2)~(4).四、数学运用例1 求方程x2-2x-1=0在区间(-1,0)上的近似解(精确到0.1).例2 借助计算器用二分法求方程lgx=3-x的近似解(精确到0.1)变式训练:利用计算器求方程2x+x=4的近似解(精确到0.1).练习1.确定下列函数f(x)的零点与方程的根存在的区间(k,k+1)(kÎZ):(1)函数f(x)=x3-3x-3有零点的区间是   .(2)方程5x2-7x-1=0正根所在的区间是   .(3)方程5x2-7x-1=0负根所在的区间是   .(4)函数f(x)=lgx+x-3有零点的区间是.2.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点x0=2.5,那么下一个有根区间是.3.已知方程x3-3x-3=0在实数范围内有且只有一个根,用二分法求根的近似解(精确到0.1).五、要点归纳与方法小结1.二分法的概念及其适用条件,并能够根据这样的过程进行实际求解.2.了解二分法是求方程近似解的常用方法.六、作业课本P79-1,2,3. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭