资料简介
函数的表示法
引例某种笔记本的单价是5元,买x个笔记本需要元。试用函数不同表示法表示函数解:这个函数的定义域是数集{1,2,3,4,5}用解析法可将函数y=f(x)表示为用列表法可将函数表示为笔记本数x12345钱数y510152025
用图象法可将函数表示为下图.....012345510152025xy笔记本数x12345钱数y510152025定义域要优先考虑注意数学问题的实际背景
函数的常用表示方法(1)解析法:就是用数学表达式表示两个变量之间的对应关系。(实例1)(2)图象法:就是用图象表示两个两个变量之间的对应关系。(实例2)(3)列表法:就是列出表格来表示两个变量之间的对应关系。(实例3)
例1下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表。第一次第二次第三次第四次第五次第六次王伟988791928895张城907688758680赵磊686573727582班平均分88.278.385.480.375.782.6注意1.本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点;2.本例能否用解析法?为什么?并不是每个函数都一定能写出它的解析式.
函数的三种表示法的优点:1、解析法有两个优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值。2、图象法的优点是直观形象地表示自变量的变化,相应的函数值变化的趋势,有利我们通过图象研究函数的某些性质。3、列表法的优点是不需要计算就可以直接看出与自变量的值相对应的函数值。
函数的三种表示法的缺点:1、解析法的缺点:有些问题有时很难用表达式来表示。2、图象法的缺点:图像及相对应的点的坐标往往不准确。3、列表法的缺点:有时应用有一定的局限性。将三者合理的结合在一起,是我们学习的主要内容。
例题讲解1、设集合M={x|0≤x≤2},集合N={y|0≤y≤2},给出下列四个图像,其中能表示集合M到N的函数关系的有.
例题讲解2、在某洗衣店中,每洗一次衣服(4.5kg以内)需付费4元,如果在这家洗衣店洗衣满12次,则其后可以免费洗一次,如果某人在这家店中洗了16次衣服.(1)根据题意填写下表:洗衣次数n58121316洗衣费c(2)“费用c是次数n的函数”还是“次数n是费用c的函数”?(3)写出当n≤16时的函数的解析式.
例题讲解3、某水库在防汛期间某一天24小时内的水位变化情况如图所示,该水库的安全水位为50米,警戒水位为60米,纵轴表示实际水位相对于安全水位的水深,根据图像回答下列问题:(1)这一天水库的最高水位是多少?最低水位是多少?(2)这一天中,该水库的水位何时是上升阶段?
函数的表示法
引例国内投寄信函(外埠),每封信函不超过20g付邮资80分,超过20g而不超过40g付邮资160分,依次类推,每封xg(0
查看更多