资料简介
集合的基本运算学习时间地点教师刘丽丽学生姓名学习科目高中数学学习内容集合的基本运算学习目标(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。教学重点集合的交集与并集、补集的概念教学方法本次课以新课的形式主讲,老师通过列举例子和讲解说明引导学生积极思考,让学生通过观察、类比、思考、交流、讨论,发现集合间的基本关系。老师对于同学说漏或说错的地方进行改正讲解
教学内容一、引入课题我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?思考(P9思考题),引入并集概念。二、新课教学1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)记作:A∪B读作:“A并B”即:A∪B={x|x∈A,或x∈B}Venn图表示:?说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。例题(P9-10例4、例5)说明:连续的(用不等式表示的)实数集合可以用数轴上的一段封闭曲线来表示。问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。2.交集
教学内容一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。记作:A∩B读作:“A交B”即:A∩B={x|∈A,且x∈B}交集的Venn图表示说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。例题(P9-10例6、例7)拓展:求下列各图中集合A与B的并集与交集说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集1.补集全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,记作:CUA即:CUA={x|x∈U且x∈A}补集的Venn图表示
说明:补集的概念必须要有全集的限制例题(P12例8、例9)1.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。2.集合基本运算的一些结论:A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩AAA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A(CUA)∪A=U,(CUA)∩A=若A∩B=A,则AB,反之也成立若A∪B=B,则AB,反之也成立若x∈(A∩B),则x∈A且x∈B若x∈(A∪B),则x∈A,或x∈B课堂练习(1)设A={奇数}、B={偶数},则A∩Z=A,B∩Z=B,A∩B=(2)设A={奇数}、B={偶数},则A∪Z=Z,B∪Z=Z,A∪B=Z3.三、归纳小结
教学内容学生已经学习了集合的含义与表示,集合间的基本关系,并会求集合的补集,对平面图形的分类也比较熟悉,会用三种方法表示集合,有数形结合的思想和意识,但逻辑思维能力、认识事物的能力相对较弱,在教学过程中应强调通过元素认识集合。五、习题巩固1、设集合A={xQ|x>-1},则()A、B、C、D、2、设A={a,b},集合B={a+1,5},若A∩B={2},则A∪B=()A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}3、函数的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)4、设集合M={x|-2≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是()5、三个数70。3,0。37,,㏑0.3,的大小顺序是()A、70。3,0.37,,㏑0.3,B、70。3,,㏑0.3,0.37C、0.37,,70。3,,㏑0.3,D、㏑0.3,70。3,0.37,
教学内容f(1)=-2f(1.5)=0.625f(1.25)=-0.984f(1.375)=-0.260f(1.438)=0.165f(1.4065)=-0.0526、若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法逐次计算,参考数据如下表:那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为()A、1.2B、1.3C、1.4D、1.57、函数的图像为()8、设(a>0,a≠1),对于任意的正实数x,y,都有()A、f(xy)=f(x)f(y)B、f(xy)=f(x)+f(y)C、f(x+y)=f(x)f(y)D、f(x+y)=f(x)+f(y)9、函数y=ax2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则()
A、b>0且a0时,f(x)=x,则当x0且2x-1(2)㏒a>0,当a>1时,>1当00的所有解;所有的大树。2.观察下面几个例子,你能发现两个集合间有什么关系了吗?(1)A={1,2,3},B={1,2,3,4,5};(2)设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;(3)设C={x|x是两边相等的三角形},D={x|x是等腰三角形}。3.教师组织学生分组讨论:这7个实例的共同特征是什么?4.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。=5.组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系。6.教师指出:集合常用大写字母A,B,C,D……表示,元素常用小写字母a,b,c,d……表示。一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素。
(1)一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集。记作:(或),读作:A含于B(或B包含A)。(2)如果两个集合所含的元素完全相同,那么我们称这两个集合相等。教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图。如图l和图2分别是表示问题2中实例1和实例7的Venn图。B图1图2
7.与实数中的结论“若a>=b且b>=a则a=b”相类比,在集合中,你能得出什么结论?教师引导学生通过类比,思考得出结论:若,且,则A=B。请同学们举出几个具有包含关系.相等关系的集合实例,并用Venn图表示.学生主动发言,教师给予评价。三、质疑答辩,排难解惑,发展思维1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等。2.教师组织引导学生思考以下问题:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流。让学生充分发表自己的建解。3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。4.教师提出问题,让学生思考(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么,a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。如果a是集合A的元素,就说a属于集合A,记作aA;如果a不是集合A的元素,就说a不属于集合A,记作aA。
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。(3)让学生完成教材第6页练习第1题。5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:(1)要表示一个集合共有几种方式?(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?(3)如何根据问题选择适当的集合表示法?使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。7.学生自主学习,阅读理解,然后教师引导学生阅读教材第7页中的相关内容,并思考回答下例问题:(1)集合A是集合B的真子集的含义是什么?什么叫空集?(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?(3)0,{0}与空集三者之间有什么关系?(4)包含关系{a}AÍ与属于关系aAÎ正义有什么区别?试结合实例作出解释。(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?(6)能否说任何一人集合是它本身的子集,即AA?(7)对于集合A,B,C,D,如果AB,BC,那么集合A与C有什么关系?教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法。四、巩固深化,发展思维1.(1)用自然语言描述集合{1,3,5,7,9};(2)用例举法表示集合{xN|1=
查看更多