资料简介
1.2有理数(7)有理数的加法(1)导学案设计题目1.2有理数(7)有理数的加法(1)课时1学校星火一中教者刘占国年级七年学科数学设计来源自我设计教学时间2012年9月14日学习目标1、探索有理数加法法则,理解有理数的加法法则;2、能运用有理数加法法则,正确进行有理数加法运算;3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.新-课-标-第-一-网重点有理数加法法则的过程及和的符号的确定难点和的符号的确定学习方法师生共同合作探索有理数加法法则的过程及和的符号的确定学习过程一、有理数加法的探索1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?(1)向东行驶5千米后,又向东行驶2千米,(2)向西行驶5千米后,又向西行驶2千米,(3)向东行驶5千米后,又向西行驶2千米,(4)向西行驶5千米后,又向东行驶2千米,(5)向东行驶5千米后,又向西行驶5千米,(6)向西行驶5千米后,静止不动,2.足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:赢球数净胜球算式主场客场3‐2‐3232‐3‐2300‐3你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.二、有理数加法的归纳探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?说一说:两个有理数相加有多少种不同的情形?
议一议:在各种情形下,如何进行有理数的加法运算?归纳:有理数加法法则:教材第18页三、实践应用问题1.口答新|课|标|第|一|网(1)(+8)+(+5)(2)(-8)+(-5)(3)(+8)+(-5)(4)(-8)+(+5)(5)(-8)+(+8)(6)(+8)+0;问题2.某公司三年盈利情况如下表所示,规定盈利为“+”(单位:万元)第一年第二年第三年-24+15.6+42前两年盈利了多少万元?三年共盈利多少万元?列出算式并解答问题3.判断(1)两个有理数相加,和一定比加数大.()(2)绝对值相等的两个数的和为0.()(3)两有理数的和为负数,则这两个数中至少有一个是负数.()四、课堂反馈:新课标第一网1.一个正数与一个负数的和是()A、正数B、负数C、零D、以上三种情况都有可能2.两个有理数的和()A、一定大于其中的一个加数B、一定小于其中的一个加数C、大小由两个加数符号决定D、大小由两个加数的符号及绝对值而决定3.计算(1)(+10)+(-4)(2)(-15)+(-32)(3)(-9)+0(4)43+(-34)(5)(-10.5)+(+1.3)(6)(-)+
达标测评一、选择题1.若两数的和为负数,则这两个数一定()wWw.xKb1.coMA.同负B.一正一负C.一个为0D.以上情况都有可能2.两个有理数相加,若它们的和小于每一个加数,则这两个数()A.都是正数B.都是负数C.互为相反数D.符号不同3.如果两个有理数的和是正数,那么这两个数()A.都是正数B.都是负数C.都是非负数D.至少有一个正数4.使等式成立的有理数是()A.任意一个整数B.任意一个非负数C.任意一个非正数D.任意一个有理数5.对于任意的两个有理数,下列结论中成立的是()A.若则B.若则C.若则D.若则6.下列说法正确的是()A.两数之和大于每一个加数B.两数之和一定大于两数绝对值的和C.两数之和一定小于两数绝对值的和D.两数之和一定不大于两数绝对值的和二、判断1.若某数比-5大3,则这个数的绝对值为3.()2.若a>0,b0.()3.若a+b
查看更多