资料简介
圆锥的体积教材分析1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。3.培养学生自主学习能力和小组合作学习的能力学情分析培养学生的思维能力和空间想象能力 教学目标1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。3.培养学生自主学习能力和小组合作学习的能力教学重点和难点教学重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。教学难点: 理解圆锥体积公式的推导过程。教具学具:不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。一、创设情境,提出问题 师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算? 生:我选择底面最大的;生:我选择高是最高的; 生:我选择介于二者之间的。 师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢? 生:只要求出冰淇淋的体积就可以了。 师:冰淇淋是个什么形状?(圆锥体) 生:你会求吗?
师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。二、设疑激趣,探求新知 师:那么你能想办法求出圆锥的体积吗? 生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。 师:如果这样,你觉得行吗? 教师根据学生的回答做出最后的评价; 生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢? 师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。 生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。 师:此种方法是否可行? 学生进行评价。 师:哪个小组还有更好的办法? 生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。
师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。 1、各小组进行观察讨论。 2、各小组进行交流,教师做适当的板书。 通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。 3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论) 4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。 师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么? 师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系? 生:大约是圆柱的一半。 生:…… 师:到底谁的意见正确呢? 师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧! 要求:
实验材料,沙或水或米 实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。(生进行实验操作、小组交流)师: 谁来汇报一下,你们组是怎样做实验的? 通过做实验,你们发现它们有什么关系?生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。 生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。) 师:同学们得出这个结论非常重要,其他组也是这样的吗? 师:请看大屏幕,看数学小博士是怎样做的?(课件演示) 齐读结论: 师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式? (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh 师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?(噢!三种冰淇淋的体积原来一样大)三、联系生活,拓展运用:
1、基本练习 (1)判断对错,并说明理由。 圆柱的体积相当于圆锥体积的3倍。() 一个圆柱木料,把它加工成最大的圆锥,削去的部分的体积和圆锥的体积比是() 一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。() (2)计算下面圆锥的体积。(单位:厘米) s=25.12h=2.5 r=4,h=6 2、变形练习 出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子, 得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米, (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗? (2)、找一找这些计算方法有什么共同的特点?V锥=1/3Sh(3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?四、总结 :这节课你们有哪些收获?
板书设计圆柱的体积圆柱体积÷3=圆锥体积则V圆锥=sh÷3即V圆锥=1/3sh
查看更多