返回

资料详情(天天资源网)

资料简介

课题:圆柱的体积教学目标:知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。过程与方法:初步学会用转化的数学思想和方法,解决实际问题的能力。情感态度与价值观:认识了圆柱的特征的基础上,进一步从体积方面丰富学生对圆柱的认识。教学重点:掌握圆柱的体积公式,并能运用其解决简单实际问题教学难点:圆柱体积的计算公式的推导教学方法:观察探究、操作归纳教学准备:圆柱体体积公式推导模型教学过程:一、【复习导入】1.口头回答。(1)什么叫体积?怎样求长方体的体积?(2)怎样求圆的面积?圆的面积公式是什么?(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。2.引入新课。我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?教师板书:圆柱的体积(1)。二、【新课讲授】1.教学圆柱体积公式的推导。(1)教师演示。把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。(2)学生利用学具操作。(3)启发学生思考、讨论:①圆柱切开后可以拼成一个什么立体图形?学生:近似的长方体。②通过刚才的实验你发现了什么?教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。(4)学生根据圆的面积公式推导过程,进行猜想:①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?(5)启发学生说出:通过以上的观察,发现了什么?①平均分的份数越多,拼起来的形状越接近长方体。②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。(6)推导圆柱的体积公式。①学生分组讨论:圆柱的体积怎样计算?②学生汇报讨论结果,并说明理由。教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。2.教学补充例题。(1)出示补充例题:一根圆柱形钢材,底面积是50cm2,高是2.1m。它的体积是多少?(2)指名学生分别回答下面的问题:①这道题已知什么?求什么?②能不能根据公式直接计算?③计算之前要注意什么?学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。(3)出示下面几种解答方案,让学生判断哪个是正确的。①50×2.1=105(cm3)答:它的体积是105cm3。②2.1m=210cm50×210=10500(cm3)答:它的体积是10500cm3。③50cm2=0.5m20.5×2.1=1.05(m3)答:它的体积是1.05m3。④50cm2=0.005m20.005×2.1=0.0105(m3)答:它的体积是0.0105m3。 先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?教师板书:V=πr2h。三、【课堂作业】教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。四、【课堂小结】通过这节课的学习,你有什么收获?你有什么感受?五、【课后作业】完成练习册中本课时的练习。六、教学板书: 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭