返回

资料详情(天天资源网)

资料简介

讲授新课 1. 有一组向量,它们的方向相同、大小相 同,这组向量有什么关系? 2. 任一组平行向量都可以移到同一直线上 吗?这组向量有什么关系? 问题 讲授新课 1. 相等向量定义: 长度相等且方向相同的向量叫相等向量. 说明: (1) 向量a与b相等,记作a=b; (2) 零向量与零向量相等; (3) 任意两个相等的非零向量,都可用同 一条有向线段表示,并且与有向线段 的起点无关. a b c 讲授新课 2. 共线向量与平行向量关系: 平行向量就是共线向量,因为任一组 平行向量都可移到同一直线上(与有向线段 的起点无关). 说明: (1) 平行向量可以在同一直线上,要区别于 两平行线的位置关系; (2) 共线向量可以相互平行,要区别于在 同一直线上的线段的位置关系. 例1. 如图,设O是正六边形 ABCDEF的中心,分别写出 图中与向量 相等的向量. 讲授新课 变式三:与向量 共线的向量有哪些? B A O C D E F 变式一:与向量 长度相等的向量有多 少个? 变式二:是否存在与 向量长度相等、 方向相反的向量? 讲授新课 例2. 判断: (1) 不相等的向量是否一定不平行? (2) 与零向量相等的向量必定是什么向量? (3) 两个非零向量相等的条件是什么? (4) 共线向量一定在同一直线上吗? 讲授新课 不一定 例2. 判断: (1) 不相等的向量是否一定不平行? (2) 与零向量相等的向量必定是什么向量? (3) 两个非零向量相等的条件是什么? (4) 共线向量一定在同一直线上吗? 讲授新课 不一定 零向量 例2. 判断: (1) 不相等的向量是否一定不平行? (2) 与零向量相等的向量必定是什么向量? (3) 两个非零向量相等的条件是什么? (4) 共线向量一定在同一直线上吗? 讲授新课 例2. 判断: (1) 不相等的向量是否一定不平行? (2) 与零向量相等的向量必定是什么向量? (3) 两个非零向量相等的条件是什么? (4) 共线向量一定在同一直线上吗? 不一定 零向量 长度相等且方向相同 讲授新课 例2. 判断: (1) 不相等的向量是否一定不平行? (2) 与零向量相等的向量必定是什么向量? (3) 两个非零向量相等的条件是什么? (4) 共线向量一定在同一直线上吗? 不一定 不一定 零向量 长度相等且方向相同 讲授新课 例3. 下列命题正确的是 ( C ) A. a与b共线,b与c共线,则a与c也共线 B. 任意两个相等的非零向量的始点与终点 是一平行四边形的四顶点 C. 向量a与b不共线,则a与b都是非零向量 D. 有相同起点的两个非零向量不平行 讲授新课 例3. 下列命题正确的是 ( C ) A. a与b共线,b与c共线,则a与c也共线 B. 任意两个相等的非零向量的始点与终点 是一平行四边形的四顶点 C. 向量a与b不共线,则a与b都是非零向量 D. 有相同起点的两个非零向量不平行 讲授新课 练习. ①向量 是共线向量,则A、B、 C、D四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等; ④四边形ABCD是平行四边形当且仅当 1.判断下列命题是否正确,若不正确, 请简述理由. 讲授新课 练习. ①向量 是共线向量,则A、B、 C、D四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等; ④四边形ABCD是平行四边形当且仅当 1.判断下列命题是否正确,若不正确, 请简述理由. 讲授新课 1.判断下列命题是否正确,若不正确, 请简述理由. 练习. ①向量 是共线向量,则A、B、 C、D四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等; ④四边形ABCD是平行四边形当且仅当 讲授新课 练习. ①向量 是共线向量,则A、B、 C、D四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等; ④四边形ABCD是平行四边形当且仅当 1.判断下列命题是否正确,若不正确, 请简述理由. 讲授新课 练习. ①向量 是共线向量,则A、B、 C、D四点必在一直线上; ②单位向量都相等; ③任一向量与它的相反向量不相等; ④四边形ABCD是平行四边形当且仅当 1.判断下列命题是否正确,若不正确, 请简述理由. 讲授新课 练习. 1.判断下列命题是否正确,若不正确, 请简述理由. ⑤一个向量方向不确定当且仅当模为0; ⑥共线的向量,若起点不同,则终点一 定不同. 讲授新课 练习. 1.判断下列命题是否正确,若不正确, 请简述理由. ⑤一个向量方向不确定当且仅当模为0; ⑥共线的向量,若起点不同,则终点一 定不同. 讲授新课 练习. 1.判断下列命题是否正确,若不正确, 请简述理由. ⑤一个向量方向不确定当且仅当模为0; ⑥共线的向量,若起点不同,则终点一 定不同. 讲授新课 练习. 2.教材P.77练习第4题. 1.判断下列命题是否正确,若不正确, 请简述理由. ⑤一个向量方向不确定当且仅当模为0; ⑥共线的向量,若起点不同,则终点一 定不同. 1. 描述向量的两个指标:模和方向. 2. 平行向量不是平面几何中的平行线段 的简单类比. 3. 共线向量与平行向量的关系、相等向量. 课堂小结 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭