资料简介
9.1.2 不等式的性质(1)
教学目标 1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性. 教学难点 正确运用不等式的性质。 知识重点 理解并掌握不等式的性质。 教学过程(师生活动) 设计理念
提出问题 教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:1、天平被调整到什么状态?2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。 探究新知 1、用“>”或“<”填空.(1)-1 < 3 -1+2 3+2 -1-3 3-3(2) 5 >3 5+a 3+a 5-a 3-a(3) 6 > 2 6×5 2×5 6×(-5)2×(-5)(4) -2 < 3(-2)×6 3×6 (-2)×(-6) 3×(一6)(5)-4 >-6 (-4)÷2(-6)÷2(-4)十(-2) (-6)十(-2)2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.3、让学生充分发表“发现”,师生共同归纳得出: 不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变. 不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变. 不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.4、你能说出不等式性质与等式性质的相同之处与不同之处吗? 通过动手、动口、动脑,引导学生运用类比、归纳的数学思想去探究问题,在品尝成功的喜悦中激发出学数学的兴趣。
渗透类比思想。 探究新知 4、 下列哪些是不5、 等式x+3 > 6的解?哪些不6、 是?-4,-2. 5,0,1,2.5,3,3.2,4.8,8,122、直接想出不等式的解集,并在数轴上表示出来:(1)x+3 > 6(2)2x < 8(3)x-2 > 0 巩固新知 1、 判断(1)∵a < b ∴ a-b < b-b(2)∵a < b ∴ (3)∵a < b ∴ -2a < -2b(4)∵-2a > 0 ∴ a > 0(5)∵-a < 0 ∴ a < 32、 填空(1)∵ 2a > 3a ∴ a是 数(2)∵ ∴ a是 数(3)∵ax < a且 x > 1 ∴ a是 数3、 根据下列已知条件,4、 说出a与b的不5、 等关系,6、 并说明是根据不7、 等式哪一条性质。(1)a-3 > b-3 (2) (3)-4a > -4b 设置这几个练习,既可以培养学生独立思考的能力,又可强化对概念的理解,使学生真正认识不等式的性质。 总结归纳
在学生自己总结的基础上,教师应强调两点:1、等式性质与不等式性质的不同之处;2、在运用“不等式性质3"时应注意的问题. 学生通过总结,可以帮助自己从整体上把握本节课所学知识,培养良好的学习习惯,也为下节课学好解不等式打下基础。 小结与作业 布置作业 1、必做题:教科书第134页习题9.1第4、5题2、选做题:教科书第134页习题9. 1第7题.3、备选题: 本课教育评注(课堂设计理念,实际教学效果及改进设想) 本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础. 教学过程中贯穿了一条“创设情境,引出新知—实验讨论,得出性质—探究辨析,突破难点—运用性质,解决问题”的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高. 为了突破教学难点,让学生能熟练准确地运用“不等式性质3",本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通.
查看更多