返回

资料详情(天天资源网)

资料简介

2.2从古老的代数书说起---一元一次方程的讨论(1) 【教学目标】 1.经历运用方程解决实际问题的过程; 2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程; 3.通过具体的例子感受一些常用的相等关系式. 【对话探索设计】 〖探索1〗 (1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________. (2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个学校购买了多少台计算机? 解:设前年购买计算机x台,那么, 设计(1)是让学生感受列代数式是列方程的基础. 去年购买的计算机的数量是________; 今年购买的计算机的数量是________; 根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程: ____________________________. 合并得________________. 系数化为1得______________. 答:______________________. 归纳:总量等于各部分量的和是一个基本的相等关系. 〖探索2〗 (1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本. (2) 把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本. (3) 把一些书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺20本.这个班有多少学生? 解: 设这个班级有x名学生, 根据第一关系,这批书共_________________本; 根据第二关系,这批书共_________________本; 这批书的总数是个定值,表示它的两个不同的式子应该相等. 熟悉这些关系有助于列方程. 根据这一相等关系列得方程: ________________________. 想一想,怎样解这个方程? 归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系. 〖练习〗 1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨. (2)灌溉两块同样大的实验田,第一块用喷灌的方式,第二块用漫灌的方式, 喷灌的用水量是漫灌的25%,若两块地共用水300吨.每块地各用水多少吨? 解:设第二块地(漫灌)用水x吨, 根据关系: 喷灌的用水量是漫灌的25%(关系式是:喷灌的用水量=漫灌的的用水量×25%),得 第一块地(喷灌)用水________吨. 根据关系: 两块地共用水300吨,可列方程: __________________________________. 解得___________. 答:___________________________. 〖作业〗 P79.练习,P84.1,6 〖补充作业〗 1.按要求列出方程: (1)x的1.2倍等于36;     (2)y的四分之一比y的2倍大24. 2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量. 解:设前年的产量是x吨,根据关系: 去年的产量是前年的2倍还多150吨,得去年的产量为______________, 根据去年的产量是950吨列方程:__________________ . 解得___________.答_________________________. 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭