资料简介
2.2从古老的代数书说起---一元一次方程的讨论(2)
【教学目标】
1.进一步经历运用方程解决实际问题的过程,初步体会方程是刻画现实世界的有效数学模型;
2.学会合并(同类项)及移项,会解"ax+bx=c"及"ax+b=cx+d"类型的一元一次方程;
3.初步体会一元一次方程的应用价值,感受数学文化;
4.理解解方程的目标,体会解法中蕴涵的化归思想.
〖探索1〗
等式一边的项可以移到等式的另一边吗?
例如:3+5=8这是一个等式.把左边的一项"3"移到右边,得到什么式子?这时等式成立吗?
如果把"3"变号后移到的另一边呢?
换一个等式-6-7=-13试一试.
任写一个等式再试一试.
〖探索2〗
(1)方程x+3=-1的解是多少?
(1)把方程x+3=-1中左边的常数项”3”移到右边,就得到方程x=-1+3.所得的方程的解与原方程的解一样吗?
〖探索3〗
怎样求方程x-7=5的解?
有的学生可能还是乐意用算术解法,教师要有足够的耐心.
甲的解法是:这是一个表示减法运算的式子,x是被减数,7是减数,5是差.所以有x=5+7(理由是_______________________),于是x=12.
乙的解法是:这是一个等式,根据等式的性质1,等式两边________,结果仍相等,把方程的两边都加7,得x-7+7=5+7,于是x=12.
丙的解法是:把方程左边的项-7,变号(即变成+7)后移到方程的右边,得x=5+7,于是x=12.
议一议,三种解法,你乐意用哪一种?
〖归纳〗
解方程时,把方程一边的某项变号后移到另一边,这种变形叫移项.
注意:移项的要点不在移动,而在于变号.
想一想:移项为什么要变号?移项的根据是什么?
〖探索4〗
以下各方程的“移项”对不对?为什么?
(1)x+5=7,移项得x=7+5;
(2)3-x=7,移项得-x=7-3;
(3)2x=7x,移项得2x+7x=0;
(4)2x=7x-6,移项得2x-7x=-6.
〖探索5〗
移项的目的是把方程化为ax=b的形式,以下的“移项” 都达不到预期的目的.你认为应该怎样做才对?
(1)3x+6=0, 移项得0=-3x-6;
(2)3x=5x-7,移项得3x+7=5x;
(3)3-x=5x, 移项得3-x-5x=0;
(4)3x+20=7x-18, 移项得-7x+18=-3x-20.
〖例题学习〗
P81.例1
〖练习〗
P81.练习
〖作业〗
P84.习题2,3,9
〖补充作业〗
1.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数对调,那么所得到的两位数比原两位数大36.求原两位数.
解:设原两位数十位上的数为x ,
那么,根据个位上的数是十位上的数的2倍,得个位上的数是________,
则原两位数记为___________.
因为对调后所得到的新两位数的十位上的数为______,个位上的数为______,新两位数应记为___________________.
根据新两位数比原两位数大36,列方程:_____________________.
解这个方程得__________.答:______________________________.
2.〖小调查〗今年6月份你家的固定电话的收费是多少?找出发票,看看费用当中具体分为哪几项?
查看更多