资料简介
七年级数学下册《二元一次方程组》知识点复习
一、二元一次方程组
1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次方程,一般形式是ax+by=c(a≠0,b≠0)。
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
二、二元一次方程组的解法
代入消元法。我们先把第一个方程看成只有一个未知数(另一个字母看成已知数),通过移项去括号等把它写成字母等于的形式。
然后我们把第二个方程里面的那个字母换成刚才我们得到的代数式,这样我们就得到了一个一元一次方程。
把这个一元一次方程解出来,得到其中一个未知数的值。
三、二元一次方程组的应用
1.行程问题:
(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者的行程差=开始时两者相距的路程;
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:
①船在静水中的速度+水速=船的顺水速度;
②船在静水中的速度-水速=船的逆水速度;
四、简单的三元一次方程组
1. 三元一次方程组解法:
主要的解法就是加减消元法和代入消元法,通常采用加减消元法,若方程难解就用代入消元法,因题而异。
2. 简单的三元一次方程组的解法步骤:
(1)思路:解三元一次方程组的基本思想仍是消元,其基本方法是代入法和加减法。
(2)步骤:①利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
②解这个二元一次方程组,求得两个未知数的值;
查看更多