资料简介
第3章圆3.1圆
1.认识圆,理解圆的本质属性.(重点)2.认识弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,并了解它们之间的区别和联系.(难点)3.初步了解点与圆的位置关系.学习目标
观察与思考问题观察下列生活中的图片,找一找你所熟悉的图形.新课引入
·rOA★圆的旋转定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.点O为圆心的圆,记作“⊙O”,读作“圆O”.★圆的有关概念固定的端点O叫做圆心,线段OA叫做半径,一般用r表示.问题观察画圆的过程,你能说出圆是如何画出来的吗?探究圆的概念1新课讲解
一是圆心,圆心确定其位置;二是半径,半径确定其大小.同心圆等圆半径相同,圆心不同圆心相同,半径不同想一想:1.以1cm为半径能画几个圆,以点O为圆心能画几个圆?无数个圆无数个圆★确定一个圆的要素2.如何画一个确定的圆?新课讲解
(1)圆上各点到定点(圆心O)的距离都等于.(2)到定点的距离等于定长的点都在.圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.O·ACErrrrrD定长r同一个圆上★圆的集合定义问题从画圆的过程可以看出什么呢?新课讲解
o•同圆半径相等.★圆的基本性质要点归纳
ABCDO证明:∵四边形ABCD为矩形,∴AO=OC=AC,OB=OD=BD,AC=BD.∴OA=OC=OB=OD.∴A、B、C、D四个点在以点O为圆心,OA为半径的圆上.新课讲解例1矩形ABCD的对角线AC、BD相交于点O.求证:A、B、C、D四个点在以点O为圆心的同一个圆上.例1
★弦·COAB连结圆上任意两点的线段(如图中的AC)叫做弦.经过圆心的弦(如图中的AB)叫做直径.注意1.弦和直径都是线段.2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.圆的有关概念2新课讲解
★弧·COAB圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.★劣弧与优弧·COAB★半圆圆上任意两点间的部分叫做圆弧,简称弧.以A,B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.(小于半圆的弧叫做劣弧,如图中的AC;(大于半圆的弧叫做优弧,如图中的ABC.(新课讲解
★等圆·COA能够重合的两个圆叫做等圆.·CO1A容易看出:等圆是两个半径相等的圆.★等弧在同圆或等圆中,能够互相重合的弧叫做等弧.新课讲解
想一想:长度相等的弧是等弧吗?ABCD观察AD和BC是否相等?⌒⌒O新课讲解
例2如图.(1)请写出以点A为端点的劣弧及优弧;(2)请写出以点A为端点的弦及直径;弦AF,AB,AC.其中弦AB又是直径.(3)请任选一条弦,写出这条弦所对的弧.答案不唯一,如:弦AF,它所对的弧是.ABCEFDO劣弧:优弧:AF,(AD,(AC,(AE.(AFE,(AFC,(ACD,(ACF.(AF(新课讲解例2
1.根据圆的定义,“圆”指的是“圆周”,而不是“圆面”.2.直径是圆中最长的弦.▼附图解释:·COAB连结OC.在△AOC中,根据三角形三边关系,有AO+OC>AC,而AB=2OA,AO=OC,所以AB>AC.要点归纳
1.填空:(1)______是圆中最长的弦,它是______的2倍.(2)图中有条直径,条非直径的弦,圆中以A为一个端点的优弧有条,劣弧有条.直径半径一两四四2.一点和⊙O上的最近点距离为4cm,最远距离为10cm,则这个圆的半径是.7cm或3cmABCDOFE随堂即练
3.判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)长度相等的弧是等弧.随堂即练
4.一些学生正在做投圈游戏,他们呈“一”字排开.这样的队形对每一人都公平吗?你认为他们应当排成什么样的队形?不公平,应该站成圆形.随堂即练
5.一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.5m参考答案:5mO4m随堂即练
圆定义旋转定义要画一个确定的圆,关键是确定圆心和半径集合定义同圆半径相等有关概念弦(直径)直径是圆中最长的弦弧半圆是特殊的弧劣弧半圆优弧同心圆等圆同圆等弧能够互相重合的两段弧课堂总结
查看更多