资料简介
第二十四章检测卷时间:120分钟 满分:150分班级:__________ 姓名:__________ 得分:__________ 一、选择题(本题共12小题,每小题3分,共36分)1.⊙O的半径为3cm,点A到圆心O的距离OA=4cm,则点A与⊙O的位置关系是()A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.无法确定2.如图,⊙O是△ABC的外接圆,若∠ACB=40°,则∠AOB的度数为()A.20°B.40°C.60°D.80°第2题图 第3题图3.如图,弦AB⊥OC,垂足为点C,连接OA,若OC=2,AB=4,则OA等于()A.2B.2C.3D.24.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15° 第4题图第5题图5.如图,四边形ABCD是⊙O的内接四边形,若∠B=75°,∠C=85°,则∠D-∠A=()A.10°B.15°C.20°D.25°6.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a,小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.勾股定理的逆定理C.直径所对的圆周角是直角D.90°的圆周角所对的弦是直径
第6题图 第7题图7.如图,AB是⊙O的弦,AO的延长线与过点B的⊙O的切线交于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°8.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mmB.12mmC.6mmD.6mm9.如图,若△ABC的三边长分别为AB=9,BC=5,CA=6,△ABC的内切圆⊙O切AB,BC,AC于点D,E,F,则AF的长为()A.5B.10C.7.5D.4第9题图 第10题图 第11题图10.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心11.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm212.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么多少s后⊙P与直线CD相切()
A.4sB.8sC.4s或6sD.4s或8s二、填空题(本大题共6小题,每小题4分,共24分)13.已知弦AB把圆周分成1∶5的两部分,则弦AB所对的圆心角的度数为.14.如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB=°.第14题图 第15题图15.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,∠BDC=110°.连接AC,则∠A的度数是°.16.已知一条圆弧所在圆的半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,半圆O的直径AE=4,点B,C,D均在半圆上.若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为. 第17题图第18题图18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心.其中正确的结论是(只需填写序号).
三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)如图,已知CD是⊙O的直径,弦AB⊥CD,垂足为点M,点P是上一点,且∠BPC=60°.试判断△ABC的形状,并说明你的理由.20.(10分)如图,AB是⊙O的直径,半径OC⊥AB,过OC的中点D作弦EF∥AB,求∠ABE的度数.21.(10分)如图,已知⊙O中直径AB与弦AC的夹角为30°,过点C作⊙O的切线交AB的延长线于点D,OD=30cm.求直径AB的长.22.(10分)如图,由正方形ABCD的顶点A引一直线分别交BD、CD及BC
的延长线于E、F、G,连接EC.求证:CE是△CGF的外接圆⊙O的切线.23.(12分)已知等边△ABC和⊙M.(1)如图①,若⊙M与BA的延长线AK及边AC均相切,求证:AM∥BC;(2)如图②,若⊙M与BA的延长线AK、BC的延长线CF及边AC均相切,求证:四边形ABCM是平行四边形.24.(12分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD.求证:△ABE是等边三角形.
25.(12分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.26.(14分)如图,⊙O是△ABC的外接圆,圆心O在AB上,且∠B=2∠A,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,EF=FC.(1)求证:CF是⊙O的切线;(2)若⊙O的半径为2,且AC=CE,求AM的长.答案1.C 2.D 3.A 4.C 5.A 6.C 7.B 8.A 9.A10.B 11.B12.D 解析:①由题意CD与⊙P1相切于点E,∴P1E⊥CD,又∵∠AOD=30°,r=1cm,∴在△OEP1中,OP1=2cm.又∵OP=6cm,∴P1P=4cm,∴⊙P到达⊙P1
需要时间为4÷1=4(秒);②当圆心P在直线CD的右侧时,PP2=6+2=8(cm),∴⊙P到达⊙P2需要时间为8÷1=8(秒),综上可知,⊙P与直线CD相切时,时间为4秒或8秒,故选D.13.60° 14.60 15.35 16.50° 17.π18.②③ 解析:如图,连接OD.∵DG是⊙O的切线,∴∠GDO=90°.∴∠GDP+∠ADO=90°.在Rt△APE中,∠OAD+∠APE=90°,∵AO=DO,∴∠OAD=∠ADO.∴∠GPD=∠APE=∠GDP,∴GP=GD.∴结论②正确.∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAQ+∠AQC=90°.∵点C是的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°.∴∠AQC=∠BCE,∴PC=PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP,∴AP=CP=PQ,∴点P是△ACQ的外心.∴结论③正确.∵不能确定与的大小关系,∴不能确定∠BAD与∠ABC的大小关系.∴结论①不一定正确.故答案是②③.19.解:△ABC是等边三角形.(2分)理由如下:∵CD是⊙O的直径,AB⊥CD,∴=,∴AC=BC.(6分)又∵∠A=∠P=60°,∴△ABC是等边三角形.(10分)20.解:如图,连接OE.(1分)∵EF∥AB,OC⊥AB,∴EF⊥OC.(3分)∵点D是OC的中点,∴OD=OC=OE,∴∠OED=30°.(7分)∵EF∥AB,∴∠EOA=30°,∴∠ABE=∠EOA=15°.(10分)21.解:∵∠A=30°,OC=OA,∴∠ACO=∠A=30°,∴∠COD=60°.(3分)∵DC切⊙O于C,∴∠OCD=90°,∴∠D=30°.(6分)∵OD=30cm,∴OC=OD=15cm,∴AB=2OC=30cm.(10分)22.证明:如图,连接OC,则OG=OC,∴∠G=∠OCG.(2分)∵四边形ABCD是正方形,∴AB=CB,∠ABE=∠CBE=45°.(4分)又∵BE=BE,∴△ABE≌△CBE(SAS),∴∠BAE=∠BCE.(6分)∵∠BAE+∠G=90°,∴∠BCE+∠OCG=90°,(8分)∴∠ECO=90°,∴EC是△CGF的外接圆⊙O的切线.(10分)
23.证明:(1)∵⊙M与AK、AC相切,∴AM平分∠KAC.(2分)又∵△ABC是等边三角形,∴∠KAC=120°,(4分)∴∠KAM=∠B=60°,∴AM∥BC;(6分)(2)由(1)得AM∥BC,同理CM∥AB,(10分)∴四边形ABCM是平行四边形.(12分)24.证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°.(2分)∵∠DCE+∠BCD=180°,∴∠A=∠DCE.∵DC=DE,∴∠DCE=∠AEB.(4分)∴∠A=∠AEB;(6分)(2)∵OE⊥CD,∴CF=DF,∴OE是CD的垂直平分线,∴ED=EC.(8分)又∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形.∴∠AEB=60°.(10分)∵∠A=∠AEB,∴△ABE是等腰三角形.∴△ABE是等边三角形.(12分)25.(1)证明:∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(4分)(2)解:如图,连接OC、OD.(5分)∵AB是⊙O的直径,弦CD⊥AB于点E,∴=.(7分)∵∠PBC=∠BCD=22.5°,∴∠BOC=∠BOD=2∠BCD=45°,∴∠AOC=180°-∠BOC=135°,(10分)∴劣弧AC的长为=.(12分)26.(1)证明:如图,连接OC.(1分)∵⊙O是△ABC的外接圆,圆心O在AB上,∴AB是⊙O的直径,∴∠ACB=90°.又∵∠B=2∠A,∴∠B=60°,∠A=30°.(3分)∵EM⊥AB,∴∠EMB=90°.在Rt△EMB中,∠B=60°,∴∠E=30°.又∵EF=FC,∴∠ECF=∠E=30°.又∵∠ECA=90°,∴∠FCA=60°.(5分)∵OA=OC,∴∠OCA=∠A=30°,∴∠FCO=∠FCA+∠ACO=90°,∴OC⊥CF,∴FC是⊙O的切线;(7分)(2)解:在Rt△ABC中,∵∠ACB=90°,∠A=30°,AB=4,∴BC=AB=2,AC==BC=2.(9分)∵AC=CE,∴CE=2,∴BE=BC+CE=2+2.(11分)在Rt△BEM中,∠BME=90°,∠E=30°,∴BM=BE=1+,∴AM=AB-BM=4-1-=3-.(14分)
查看更多