资料简介
22.3实际问题与二次函数第1课时教学目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。重点难点:重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是教学的重点。难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。教学过程:一、创设问题情境如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为:y=ax2(a<0)(1)因为y轴垂直平分AB,并交AB于点C,所以CB==2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。因为点B在抛物线上,将它的坐标代人(1),得-0.8=a×22所以a=-0.2因此,所求函数关系式是y=-0.2x2。二、引申拓展问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。解:设所求的二次函数关系式为y=ax2+bx+c。因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。-3-
由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到解这个方程组,得所以,所求的二次函数的关系式为y=-x2+x。问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)三、课堂练习:P18练习1.(1)、(3)2。四、综合运用例1.如图所示,求二次函数的关系式。分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到解这个方程组,得所以,所求二次函数的关系式是y=-x2+x+4练习:一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。五、小结:二次函数的关系式有几种形式,二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。六、作业1.习题4.(1)、(3)、5。教后反思:-3-
22.3 实际问题与二次函数(1)作业优化设计1.二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式。2.若二次函数的图象经过A(0,0),B(-1,-11),C(1,9)三点,求这个二次函数的解析式。3.如果抛物线y=ax2+Bx+c经过点(-1,12),(0,5)和(2,-3),;求a+b+c的值。4.已知二次函数y=ax2+bx+c的图象如图所示,求这个二次函数的关系式;5.二次函数y=ax2+bx+c与x轴的两交点的横坐标是-,,与x轴交点的纵坐标是-5,求这个二次函数的关系式。-3-
查看更多