资料简介
人教2019版必修第一册第十章概率10.3.2随机模拟
课程目标1.理解随机模拟试验出现地意义.2.利用随机模拟试验求概率.
数学学科素养1.数学抽象:随机模拟试验的理解.2.数学运算:利用随机模拟试验求概率.
自主预习,回答问题阅读课本255-257页,思考并完成以下问题1、什么是随机模拟?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
知识清单1.随机模拟我们知道,利用计算器或计算机软件可以产生随机数.实际上,我们也可以根据不同的随机试验构建相应的随机数模拟实验,这样就可以快速地进行大量重复试验了,这么随机模拟方式叫做随机模拟.我们称利用随机模拟解决问题地方法为蒙特卡洛(MonteCarlo)方法.
小试牛刀1.下列不能产生随机数的是()A.抛掷骰子试验B.抛硬币C.计算器D.正方体的六个面上分别写有
2.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示未命中;再以每三个随机数为一组代表三次投篮的结果.经随机模拟产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为()A.0.35B.0.25C.0.20D.0.15
题型分析举一反三例1从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件发生的概率.
例2在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
2.一个袋中有7个大小、形状相同的小球,6个白球1个红球.现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取.试设计一个模拟试验,计算恰好第三次摸到红球的概率.
解析用1,2,3,4,5,6表示白球,7表示红球,利用计算器或计算机产生1到7之间取整数值的随机数,因为要求恰好第三次摸到红球的概率,所以每三个随机数作为一组.例如,产生20组随机数.666743671464571561156567732375716116614445117573552274114622
查看更多