资料简介
课时分层作业(四十一) 古典概型(建议用时:60分钟)[合格基础练]一、选择题1.一部三册的小说,任意排放在书架的同一层上,则第一册和第二册相邻的概率为( )A. B. C. D.C [试验的样本空间Ω={(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)},共6个样本点,事件“第一册和第二册相邻”包含4个样本点,故第一册和第二册相邻的概率为P==.]2.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是( )A.B.C.D.D [设所取的数中b>a为事件A,如果把选出的数a,b写成一数对(a,b)的形式,则试验的样本空间Ω={(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)},共15个,事件A包含的样本点有(1,2)、(1,3)、(2,3),共3个,因此所求的概率P(A)==.]3.从甲、乙、丙、丁、戊五个人中选取三人参加演讲比赛,则甲、乙都当选的概率为( )A.B.C.D.C [从五个人中选取三人,则试验的样本空间Ω={(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊)},而甲、乙都当选的结果有3种,故所求的概率为.]6
4.同时抛掷三枚均匀的硬币,出现一枚正面,二枚反面的概率等于( )A.B.C.D.C [试验的样本空间Ω={(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,反,正),(反,正,反),(反,反,反)},共8种,出现一枚正面,二枚反面的样本点有3种,故概率为P=.]5.有五根细木棒,长度分别为1,3,5,7,9,从中任取三根,能搭成三角形的概率是( )A.B.C.D.D [设取出的三根木棒能搭成三角形为事件A,试验的样本空间Ω={(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9),(5,7,9)},样本空间的总数为10,由于三角形两边之和大于第三边,构成三角形的样本点只有(3,5,7),(3,7,9),(5,7,9)三种情况,故所求概率为P(A)=.]二、填空题6.从含有3件正品和1件次品的4件产品中不放回地任取2件,则取出的2件中恰有1件是次品的概率为. [设3件正品为A,B,C,1件次品为D,从中不放回地任取2件,试验的样本空间Ω={AB,AC,AD,BC,BD,CD},共6个.其中恰有1件是次品的样本点有:AD,BD,CD,共3个,故P==.]7.在国庆阅兵中,某兵种A,B,C三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B先于A,C通过的概率为. [用(A,B,C)表示A,B,C通过主席台的次序,则试验的样本空间Ω={(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A)},共6个样本点,其中事件B先于A,C通过的有(B,C,A)和(B,A,C),共2个样本点,故所求概率P==.]6
8.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是. [从5个数中任意取出两个不同的数,样本点的总数为10,若取出的两数之和等于5,则有(1,4),(2,3),共有2种样本点,所以取出的两数之和等于5的概率为=.]三、解答题9.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出试验的样本空间;(2)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.[解] (1)方片4用4′表示,试验的样本空间为Ω={(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)},则样本点的总数为12.(2)不公平.甲抽到牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3)5种,甲胜的概率为P1=,乙胜的概率为P2=,因为
查看更多