资料简介
10.1.1有限样本空间与随机事件1.理解随机试验的概念及特点2.理解样本点和样本空间,会求所给试验的样本点和样本空间3.理解随机事件、必然事件、不可能事件的概念,并会判断某一事件的性质重点:随机试验的概念及特点难点:理解样本点和样本空间,会求所给试验的样本点和样本空间一、新知自学一、有限样本空间的相关概念1.抛掷两枚骰子,观察它们落地时朝上面的点数情况,你能写出该试验的样本空间吗?提示可以考虑用有序数对(a,b)来表示试验的结果.其中a表示其中一枚骰子的点数,b表示另一枚骰子的点数,则有Ω={(a,b)|1≤a≤6,1≤b≤6,且a,b∈N*},当然Ω还可以用列举法进行表示,该空间中有36个样本点.2.填空:(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.说明:本节中我们研究的是具有以下特点的随机试验.①试验可以在相同条件下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.(2)样本点:随机试验E的每个可能的基本结果称为样本点.(3)样本空间:全体样本点的集合称为试验E的样本空间.(4)有限样本空间:一般地,我们用Ω表示样本空间,用ω表示样本点.如果一个试验有n个可能结果,ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间,也就是说Ω为有限集的情况即为有限样本空间.二、事件的概念及分类1.思考
(1)考察下列事件:①导体通电时发热;②向上抛出的石头会下落;③在标准大气压下,水温升高到100℃会沸腾.这些事件就其发生与否有什么共同特点?提示都是必然会发生的事件.(2)考察下列事件:①在没有水分的真空中种子发芽;②在常温常压下钢铁熔化;③一个三角形的大边所对的角小,小边所对的角大.这些事件就其发生与否有什么共同特点?提示都是不可能发生的事件.(3)考察下列事件:①某人射击一次,命中目标;②某人购买福利彩票中奖;③抛掷一枚质地均匀的骰子出现的点数为偶数.这些事件就其发生与否有什么共同特点?提示都是可能发生也可能不发生的事件.2.填空:(1)随机事件:样本空间Ω的子集称为随机事件,简称事件.(2)基本事件:只包含一个样本点的事件称为基本事件.(3)事件A发生:在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.(4)必然事件:Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.(5)不可能事件:空间⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.说明:(1)每个事件都是样本空间Ω的一个子集.(2)为了统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.一、情境与问题概率论的产生和发展
概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论问题的源泉。传说早在1654年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题:“两个赌徒约定谁先赢满5局,谁就获得全部赌金。赌了半天,A赢了4局,B赢了3局,时间很晚了,他们都不想再赌下去了。那么,这个钱应该怎么分才理?这个问题让帕斯卡苦苦思索了三年,三年后也就是1657年,荷兰著名的数学家惠更斯企图自己解决这一问题,结果写成了《论赌博中的计算》一书,这就是概率论最早的一部著作。近几十年来,随着科技的蓬勃发展概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。在初中,我们已经初步了解了随机事件的概念,并学习了在试验结果等可能的情形下求简单随机事件的概率.本节我们将进一步研究随机事件及其概率的计算,探究随机事件概率的性质.随机现象普遍存在,有的简单有的复杂,有的只有有限个可能结果,有的有无穷个可能结果;这里的无穷又分为两种,即可列无穷和不可列无穷,例如,对掷硬币试验,等待首次出现正面朝上所需的试验次数,具有可列无穷个可能结果;而预测某地7月份的的降水量,可能结果则充满某个区间,其可能结果不能一一列举,即有不可列无穷个可能结果.所以,常见的概率模型有两类,即离散型概率模型和连续型概率模型.高中阶段主要研究离散型概率模型.研究某种随机现象的规律,首先要观察它所有可能的基本结果.例如,将一枚硬币抛掷2次,观察正面、反面出现的情况;从班级随机选择10名学生,观察近视的人数;在一批灯管中任意抽取一只,测试它的寿命;从一批发芽的水稻种子中随机选取一些,观察分囊数;记录某地区7月份的降雨量等等.
我们把对随机现象的实现和对它的观察称为随机试验(randomexperiment),简称试验,常用字母E表示.我们感兴趣的是具有以下特点的随机试验:(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.思考1:体育彩票摇奖时,将10个质地和大小完全相同、分别标号0,1,2,…,9的球放入摇奖器中,经过充分搅拌后摇出一个球,观察这个球的号码,这个随机试验共有多少个可能结果?如何表示这些结果?我们只讨论Ω为有限集的情况.如果一个随机试验有n个可能结果ω1,ω2,...,ωn,则称样本空间Ω={ω1,ω2,...,ωn,}为有限样本空间.我们把随机试验E的每个可能的基本结果称为样本点,全体样本点的集合称为试验E的样本空间(samplespace).一般地,我们用Ω(欧米伽)表示样本空间,用ω表示样本点.例如,抛掷一对骰子,建立包含36个样本点的样本空间Ω1={(x,y)|x,y∈{1,2,3,4,5,6}},其中每个结果就是基本结果,如果建立只包含4个可能结果的样本空间Ω2={(偶,偶),(偶,奇),(奇,偶),(奇,奇)},其中每个元素就不能认为是基本结果.因为在样本空间Ω2中无法求“点数之和为5”的概率.例1.抛掷一枚硬币,观察它落地时哪一面朝上,写出试验的样本空间。例2.抛掷一枚骰子(touzi),观察它落地时朝上的面的点数,写出试验的样本空间.构建样本空间,这是将实际问题数学化的关键步骤,其作用体现在:可以利用集合工具(语言)描述概率问题,能用数学语言严格刻画随机事件的概念,通过与集合关系与运算的类比,可以更好地理解随机事件的关系和运算意义.可以用符号语言准确而简练地表示求解概率问题的过程.例3.抛掷两枚硬币,观察它们落地时朝上的面的情况,写出试验的样本空间如果我们用1表示硬币“正面朝上”,用0表示硬币“反面朝第一枚第二枚上”,那么样本空间还可以简单表示为Ω={(1,1),(1,0),(0,1),(0,0)}.
对于只有两个可能结果的随机试验,一般用1和0表示这两个结果.一方面数学追求最简洁地表示,另一方面,这种表示有其实际意义,在后面的研究中会带来很大的方便.1.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的样本空间;(2)求这个试验的样本点的总数;(3)“x+y=5”这一事件包含哪几个样本点?“x1”呢?(4)“xy=4”这一事件包含哪几个样本点?“x=y”呢?解:(1)Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),思考2.在体育彩票摇号实验中,摇出“球的号码是奇数”是随机事件吗?摇出“球的号码为3的倍数”是否也是随机事件?如果用集合的形式来表示它们,那么这些集合与样本空间有什么关系?显然,“球的号码为奇数”和“球的号码为3的倍数”都是随机事件.
我们用A表示随机事件“球的号码为奇数”,则A发生,当且仅当摇出的号码为1,3,5,7,9之一,即事件A发生等价于摇出的号码属于集合{1,3,5,7,9}.因此可以用样本空间Ω={0,1,2,3,4,5,6,7,8,9}的子集{1,3,5,7,9}表示随机事件A.类似地,可以用样本空间的子集{0,3,6,9}表示随机事件“球的号码为3的倍数”一般地,随机试验中的每个随机事件都可以用这个试验的样本空间的子集来表示.为了叙述方便,我们将样本空间Ω的子集称为随机事件(randomevent),简称事件,并把只包含一个样本点的事件称为基本事件(elementaryevent).随机事件一般用大写字母A,B,C,···表示,在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集Φ不包含任何样本点,在每次试验中都不会发生,我们Φ称为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形。这样,每个事件都是样本空间。Ω的一个子集.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。必然事件:在一定条件下必然要发生的事件叫必然事件。不可能事件:在一定条件下不可能发生的事件叫不可能事件。1.指出下列事件是必然事件,不可能事件,还是随机事件:(1)某地1月1日刮西北风;(2)当x是实数时,(3)手电筒的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%。(5)如果a>b,那么a一b>0;(6)从分别标有数字l,2,3,4,5的5张标签中任取一张,得到4号签;(7)某电话机在1分钟内收到2次呼叫;(8)随机选取一个实数x,得|x|
查看更多