返回

资料详情(天天资源网)

天天资源网 / 小学数学 / 教学同步 / 人教版 / 五年级上册 / 5 简易方程 / 实际问题与方程 / 五年级上册数学《实际问题与方程(二)》教案

还剩 2 页未读,点击继续阅读

继续阅读

点击预览全文

点击下载高清阅读全文,WORD格式文档可编辑

收藏
立即下载
有任何问题请联系天天官方客服QQ:403074932

资料简介

教案设计 设计说明 1.创设生活化的数学情境,激发学生的学习兴趣。 创设生活化的数学情境,不仅可以使学生容易掌握数学知识和技能,而且可以“以境生情”,可以使学生更好地体验数学内容中的情感,使原本枯燥、抽象的数学知识变得生动形象、富有情趣。课前从学生买喜欢吃的水果入手,创设了帮助阿姨算账的数学情境,引出数学问题,使学生产生探究欲望,从而更好地进行新知的学习,感受数学与生活的密切联系。 2.发挥主体作用,培养学生分析问题、解决问题的能力。 课程强调以学生的发展为本,学生在教学过程中的主体地位越来越被重视。在教学中,注意安排学生独立思考与小组交流相结合,让学生自主观察情境图,了解画面信息,找出等量关系,理清解决问题的思路,小组内讲解自己的思考过程,再向全班汇报。这样既能增加学生学习的信心,又能培养学生分析问题和解决问题的能力,拓宽学生的思维。 课前准备 教师准备 PPT课件 学情检测卡 课堂活动卡 学生准备 练习卡片 教学过程 ⊙创设情境,引入新课 师:看,水果店里真热闹啊!顾客们忙着挑选自己喜欢吃的水果,收银台忙得不可开交。一位阿姨也买了一些水果,谁来说说她都买了什么?(课件出示教材77页例3情境图) 师:从图中你还获得了哪些数学信息? 师:这位阿姨想让你们帮她算算苹果每千克多少钱,你们愿意吗? 师:这节课我们继续学习列稍复杂的方程解决生活中的实际问题。(板书课题) 设计意图:创设生动的生活情境,激发学生主动探究的欲望,建立现实生活与数学学习的桥梁。 ⊙探究新知 1.教学例3。 (1)小组交流,找出等量关系,列出方程。 师:题中的已知条件和所求问题各是什么? 预设 生1:已知条件是买苹果和梨各2 kg,共10.4元,梨每千克2.8元。 生2:问题是苹果每千克多少钱。 师:这些数学信息之间存在着怎样的等量关系?你能根据等量关系列出方程并说明你的想法吗? 预设 生1:用未知数x表示每千克苹果的价钱。可以根据“苹果的总价+梨的总价=总价钱”这一等量关系列出方程2x+2.8×2=10.4。“2x”表示苹果的总价,“2.8×2”表示梨的总价,两者相加就是总价钱。 生2:还可以根据“两种水果的单价总和×2=总价钱”这一等量关系列出方程(2.8+x)×2=10.4,“(2.8+x)”表示两种水果的单价总和。 (2)解方程,总结列形如ax+ab=c的方程解决问题的步骤。 (课件出示学生列的两个方程) 师:仔细观察这两个方程,它们和我们上节课学习的方程有什么不同? 师:上节课学习的是列形如ax±b=c的方程,是求比一个数的几倍多几(或少几)的数是多少的问题。这节课所学的知识是根据两积之和的数量关系,列形如ax+ab=c的方程来解决问题。那么形如ax+ab=c的方程怎么解呢?请同学们小组讨论这一类型方程的解法。 (学生先小组讨论,探究解法,再交流,最后汇报) 预设 生1:在2x+2.8×2=10.4这个方程中,把2x看成一个整体,先算2.8×2,原方程转化为2x+5.6=10.4,根据等式的性质1,方程左右两边同时减去5.6,就转化成了我们学过的方程。 生2:在(2.8+x)×2=10.4这个方程中,把小括号里的式子看成一个整体,也就是这个整体×2=10.4。根据等式的性质2,方程左右两边同时除以2就转化成了我们学过的方程。(师同步板书) 师:同学们真聪明!我们可以运用转化的方法把形如ax+ab=c的稍复杂的方程转化为简单的方程,进而求出方程的解。注意求出解后别忘了检验。 (3)比较。 师:这两个方程之间有什么联系?小组内讨论。 生小组内讨论后汇报:运用了乘法分配律。 2.教学例4。 (1)找出等量关系,学会设未知数并列出方程。 (课件出示教材78页例4情境图和相关信息) 师:题中有什么样的等量关系呢? (生讨论并汇报) 师:这道题和我们以前学过的应用题有什么不同之处? (以前学过的应用题中只有一个未知数,这道题中有两个未知数,而且要让我们求出这两个未知数) 师:题中有两个未知数,如果让我们列方程解答这道题,我们应该设哪个量为x比较合适,又该怎样列方程呢?下面请同学们以小组为单位进行讨论。 (生讨论并汇报) 预设 生:应该设陆地面积为x,因为根据“海洋面积=陆地面积×2.4”这个等量关系可以推导出海洋面积为2.4x。根据“陆地面积+海洋面积=地球表面积”这一等量关系就可以列出方程x+2.4x=5.1。 (师同步板书) 师根据学生的汇报帮助学生理清题中的数量关系,使学生明确为什么设陆地面积为x。 小结:用方程解题,一般设“1倍数”为x,那么“几倍数”就可以用几x表示,然后根据题中另一个已知条件找等量关系列出方程。 (边说边出示课件,列出方程) (2)探究方程的解法,求出陆地面积和海洋面积。 (生交流解题过程及结果,师指名板演) 解:设陆地面积为x亿平方千米,那么海洋面积可以表示为2.4x亿平方千米。 x+2.4x=5.1 (1+2.4)x=5.1 3.4x=5.1 34x÷3.4=5.1÷3.4 x=1.5 师:怎样求海洋面积呢?如何列式?说说你的根据是什么。 预设 生1:根据和的关系求出海洋面积为5.1-1.5=3.6(亿平方千米)。 生2:根据倍数关系求出海洋面积为2.4x=2.4×1.5=3.6。 (3)引导学生进行检验,使其养成检验的良好习惯。 师:试着按照自己的想法进行检验,检验后和大家交流一下自己的方法。 (生交流并汇报) 预设 生1:把x=1.5代入原方程检验。1.5+2.4×1.5=5.1,说明计算结果正确。 生2:检查答案是否符合已知条件“地球的表面积为5.1亿平方千米”。 1.5+3.6=5.1(亿平方千米) 说明计算结果正确。 (4)总结用形如ax±bx=c的方程解答含有两个未知数的实际问题的方法。 师:今天学的这道题有什么特点? (题中有两个未知数,且这两个未知数之间存在倍数关系) 师:用方程解答这一类型题应该怎么做? 预设 生:我们在解题时,只需设其中的一个未知数,即“1倍数”为x,那么另一个未知数就可以用含有x的式子来表示,然后根据题中的等量关系列出方程,并根据乘法分配律来解方程,求出未知数。 师:还要注意什么? 生:算出结果后要检验。 设计意图:放手让学生自主探究解方程的方法,鼓励学生独立思考,充分发挥小组合作学习的作用,同时鼓励学生根据题中的等量关系采用多样化的方法列方程,使学生经历并感受知识的形成过程,体验成功的喜悦。 ⊙巩固练习 1.教材77页“做一做”。 2.教材78页“做一做”。 ⊙全课总结 今天这节课你学到了什么新本领? ⊙布置作业 教材80页2、3题。 板书设计 实际问题与方程(二) 例3 苹果的总价+梨的总价=总价钱 解:设苹果每千克x元。 2x+2.8×2=10.4 2x+5.6=10.4 2x+5.6-5.6=10.4-5.6 2x=4.8 2x÷2=4.8÷2 x=2.4 两种水果的单价总和×2=总价钱 解:设苹果每千克x元。 (2.8+x)×2=10.4 (2.8+x)×2÷2=10.4÷2 2.8+x=5.2 28+x-2.8=5.2-2.8 x=2.4 答:苹果每千克2.4元。 例4 陆地面积+海洋面积=地球表面积 解:设陆地面积为x亿平方千米,那么海洋面积可以表示为2.4x亿平方千米。 x+2.4x=5.1 (1+2.4)x=5.1 3.4x=5.1 3.4x÷3.4=5.1÷3.4 x=1.5 5.1-1.5=3.6(亿平方千米)或2.4x=2.4×1.5=3.6 答:地球上的海洋面积是3.6亿平方千米,陆地面积是1.5亿平方千米。 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭