资料简介
3.1.1方程的根与函数的零点
方程函数x2-2x-3=0y=x2-2x-3x2-2x+1=0y=x2-2x+1x2-2x+3=0y=x2-2x+3观察下列三组方程与相应的二次函数复习引入
练习1.利用函数图象判断下列方程有没有根,有几个根:(1)-x2+3x+5=0;(2)2x(x+2)=-3;(3)x2=4x-4;(4)5x2+2x=3x2+5.
讲授新课函数零点的概念:
讲授新课对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.函数零点的概念:
探究1如何求函数的零点?
探究2零点与函数图象的关系怎样?探究1如何求函数的零点?
方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点探究2零点与函数图象的关系怎样?探究1如何求函数的零点?
探究3二次函数零点如何判定?
探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0=0<0探究3二次函数零点如何判定?
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根=0<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0没有实根探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
判别式方程ax2+bx+c=0的根函数y=ax2+bx+c的零点>0两不相等实根两个零点=0两相等实根一个零点<0没有实根0个零点探究3二次函数零点如何判定?对于二次函数y=ax2+bx+c与二次方程ax2+bx+c=0,其判别式=b2-4ac.
1.求函数y=-x2-2x+3的零点.练习
结论练习2.
3.求函数y=-x2-2x+3的零点.练习零点为-3,1.
练习4.求函数y=x3-2x2-x+2的零点,并画出它的图象.
练习零点为-1,1,2,3.4.求函数y=x3-2x2-x+2的零点,并画出它的图象.
3-2-4-22B2xyO4.求函数y=x3-2x2-x+2的零点,并画出它的图象.练习零点为-1,1,2,3.
3-2-4-22B2xyO4.求函数y=x3-2x2-x+2的零点,并画出它的图象.练习零点为-1,1,2,3.
考察函数①y=lgx②y=lg2(x+1)③y=2x④y=2x-2的零点.拓展
探究12345-1-212345-1-2-3-4xy
例
练习若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是()A.a<-1B.a>1C.-1<a<1D.0<a<1
课堂小结1.知识方面:零点的概念、求法、判定;
课堂小结1.知识方面:零点的概念、求法、判定;2.数学思想方面:函数与方程的相互转化,即转化思想借助图象探寻规律,即数形结合思想.
课后作业2.《习案》3.1第一课时.1.阅读教材P.86~P.88.
思考题若函数f(x)=x2-ax-b的两个零点是2和3,求loga25+b2.
查看更多