资料简介
指数与对数运算0.91.alog0.70.8,blog1.10.9,c1.1的大小关系是()A.cabB.abcC.bcaD.cba【答案】A0.9【解析】因为0alog0.70.81,blog1.10.90,c1.11,所以cab,故选A.20.62.三个数a0.6,bln0.6,c2之间的大小关系是()A.acbB.abcC.bacD.bca【答案】C20.6【解析】00.61,ln0.60,21cab,故选C.0.0123.设alog23,b3,cln,则()2A.cabB.abcC.acbD.bac【答案】A0.012【解析】先和0比较,alog23log120,b30,clnln1020.010得到c最小;再与1比较alog23log221,b33,得到b最大.故选A.aa4.若alog34,则22.4【答案】331aa143【解析】alog43log23log23,22323315.已知log[log(log)]02732x,那么x等于()1332A.B.C.D.3634【答案】Dlog[log(logx)]0loglogx1logx33【解析】根据732,可得32,即2,解得x28,所以11222x84,故选择D116.若a1,b1,且lg(ab)lgalg,b则,lg(a1)lg(b1).ab【答案】1,0【解析】lg(ab)lgalg,b得第1页共4页精品学习资料可选择pdf第1页,共4页-----------------------
11abab1,lg(a1)lg(b1)lg(a1)(b1)lg(abab1)lg10ab2a27.已知lg,lgab是方程2x4x10的两个根,则(lg)的值是.b【答案】221【解析】由lg,lgab是方程2x4x10的两个根可得:lgalgb2,lgalgb,222a2lgalgblgalgb4lgalgb2所以(lg)bxx18.解方程:log(424)xlog(223)【答案】x2.xxx1xxx1xx【解析】解方程log(424)log[2(223)]则:442(23)则:43240xx则:24或21(舍)∴x2.经检验x2满足方程.9.解方程21x3x(1)9(2)log(34x)log(24x1)log(34x)81【答案】(1)x2或x1;(2)x02x3x222【解析】(1)99,x3x2,x3x20解得,x2或x1(2)log(34x)log(24x1)log0.25(3x)log(34x)log(24x1)(3x)3x(2x1)(3x)得x4或x0,经检验x0为所求.10.计算下列各式的值2103312(1)(0.1)22()(2)log327lg25lg447【答案】(1)5(2)22103312【解析】(1)(0.1)22()1225437(2)log327lg25lg422211.化简求值:932337313(1)aaaa;222(2)lg5lg8lg5lg20(lg)2;3第2页共4页精品学习资料可选择pdf第2页,共4页-----------------------
13703634(3)0.001()16(23).8【答案】(1)1;(2)3;(3)89.937133【解析】(1)因为3223333a有意义,所以a0,所以原式=aaaaaaaa1。2(2)原式2lg52lg2lg1(5lg)2(lg)22(lg2lg)5lg5lg2(lg5lg)22lg5lg23。6131133442332原式=10122310182389。12.计算:13312410lg8lg125lg2lg5(1)0.027()2563(21)(2)7lg10lg1.0【答案】(1)19(2)41313312410100032841【解析】(1)原式=0.027()2563(21)(()(7)(2)172733110361101()49214964119333338125lg2lg8lg125lg2lg525lg10(2)原式=4.1lg10lg0.1121lg10lg10(1)213.求值:0.52112103(1)5(1)0.75(2);(2)2log10log0.2555+log25log4log9235.16279【答案】(1);(2)10.40.5228142799993【解析】(1)原式1()163644161642lg52lg22lg3(2)原式=log(1000.25)5gglog25852810lg2lg3lg5ab3a9314.(1)已知b1,求的值.a23131124ab(2)化简a,0b0.142341.0ab2第3页共4页精品学习资料可选择pdf第3页,共4页-----------------------
142【答案】(1)3;(2)b25ab2abaaa3a9333abab2abb222222【解析】(1)333333aa32313ab22331113934422240242ab13,原式=aababba10025252315.设函数f(x)=,则:(1)证明:f(x)+f(1﹣x)=1;1232014(2)计算:f()+f()+f()+⋯+f().2015201520152015【答案】(1)详见解析;(2)1007【解析】解答:(1)∵f(x)=,∴f(x)+f(1﹣x)=+=+=+=;(2)∵f(x)+f(1﹣x)=1,1232014∴设f()+f()+f()+⋯+f()=m,20152015201520152014201321则f()+f()+??+f()+f()=m,2015201520152015两式相加得2m=2014,则m=1007,故答案为:1007第4页共4页精品学习资料可选择pdf第4页,共4页-----------------------
查看更多