资料简介
课题:§2.6.1有理数的加法法则授课教师:郑瑜教学目的1.使学生掌握有理数加法法则,并能运用法则进行计算;2.在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。教学难点异号两数相加的法则知识重点有理数加法法则教学过程教学方法和手段引入前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算.这节课我们来研究两个有理数的加法。两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”.比如,赢3球记为+3,输2球记为-2.学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球.也就是(+3)+(+2)=+5. ①(2)上半场输了2球,下半场输了1球,那么全场共输了3球.也就是(-2)+(-1)=-3. ②让学生体验得出:(+3)+(-2)=+1(-3)+(+2)=-1(+3)+0=+3(-2)+0=-20+0=0新课教学上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考2~3分钟,再由学生自己归纳出有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3.一个数同0相加,仍得这个数。例1 计算下列算式的结果,并说明理由:学生逐题口答后,教师小结:
(1)(+4)+(+7); (2)(-4)+(-7); (3)(+4)+(-7); (4)(+9)+(-4);(5)(+4)+(-4); (6)(+9)+(-2); (7)(-9)+(+2); (8)(-9)+0;(9)0+(+2); (10)0+0.例2.计算(1)(+2)+(-11)(2)(+20)+(+12)(3)(-)+()(4)(-3.4)+4.3解:(1)(2)略(3)(-)+()=-(+) =-.(4)(-3.4)+4.3=+(4.3-3.4)=0.9注意:一具有理数由符号与绝对值两部分组成,进行加法运算时,应注意确定和的符号与绝对值。进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.课堂练习P37练习小结与作业课堂小结1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。本课作业P40习题2.6 1、2题本课教育评注(课堂设计理念,实际教学效果及改进设想)本节课加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.本节课减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.给学生观察、比较、归纳能力的一次机会.是新课改“以人为本”重要体现。
查看更多