返回

资料详情(天天资源网)

资料简介

《圆锥的体积》教学设计与反思赵平教学目的:使学生初步掌握圆锥体积的计算公式。并能运用公式正确地计算圆锥的体积,发展学生的空间观念。教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。同时渗透转化方法在数学学习中的应用。二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。 师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。汇报实验结果。先在圆锥里装满水,然后倒入圆柱。正好3次可以倒满。圆柱里装满沙子,倒入与他等底等高的圆锥,三次正好倒完。接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。多找几名同学说。板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。 板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3Sh师:在这个公式里你觉得哪里最应该注意?教学例1一个圆锥的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?1/3×19×12=76((立方厘米))答:这个零件体积是76立方厘米。做一做:课件出示,学生回答后,教师订正。1、一个圆锥的底面积是25平方分米,高是9分米,它的体积是多少?2、已知圆锥的底面半径r和高h,如何求体积V?3、已知圆锥的底面直径d和高h,如何求体积V?4、已知圆锥的底面周长C和高h,如何求体积V?5、一个圆锥的底面直径是20厘米,高是9厘米,它的体积是多少?例2在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克)判断:课件出示,学生回答后,教师订正。1、圆柱体的体积一定比圆锥体的体积大()2、圆锥的体积等于和它等底等高的圆柱体积的()。3、正方体、长方体、圆锥体的体积都等于底面积×高。()4、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米()四、教师小结。 这节课我们学习了哪些知识?你还有什么问题吗?五、作业。课本练习六、板书圆柱的体积=底面积×高字母公式:V圆柱=S·h圆锥的体积=圆柱的体积=底面积×高字母公式:V圆锥=S·h教学反思这节课是六年级圆柱和圆锥的内容,主要是求圆锥体的体积。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱相同,采用“转化”的思想。因而这节课首先复习圆柱的体积公式及推导方法,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭