资料简介
选讲1 等差数列求和
一、知识要点
若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项;数列中,项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
二、精讲精练
【例题1】 有一个数列:4,10,16,22…,52.这个数列共有多少项?
练习1:
1.等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?
6
2.有一个等差数列:2, 5,8,11…,101.这个等差数列共有多少项?
3.已知等差数列11, 16,21, 26,…,1001.这个等差数列共有多少项?
【例题2】有一等差数列:3, 7,11, 15,……,这个等差数列的第100项是多少?
练习2:
1.一等差数列,首项=3.公差=2.项数=10,它的末项是多少?
6
2.求1.4,7,10……这个等差数列的第30项。
3.求等差数列2.6,10,14……的第100项。
【例题3】有这样一个数列:1, 2, 3, 4,…,99,100。请求出这个数列所有项的和。
练习3:
计算下面各题。
(1)1+2+3+…+49+50 (2)6+7+8+…+74+75
6
(3)100+99+98+…+61+60
【例题4】求等差数列2,4,6,…,48,50的和。
练习4:计算下面各题。
(1)2+6+10+14+18+22 (2)5+10+15+20+…+195+200
(3)9+18+27+36+…+261+270
6
【例题5】计算(2+4+6+…+100)-(1+3+5+…+99)
练习5:
用简便方法计算下面各题。
(1)(2001+1999+1997+1995)-(2000+1998+1996+1994)
(2)(2+4+6+…+2000)-(1+3+5+…+1999)
(3)(1+3+5+…+1999)-(2+4+6+…+1998)
6
三、课后作业
1、张师傅做一批零件,第一天做了20个,以后每天都比前一天多做2个,做了30天刚好做完,则这批零件一共有多少个?
2、 在一次同学聚会中,一共到了45位同学和2位老师,每位同学或老师都要和其他所有人握一次手,那么一共握手了几次?
3、新星幼儿园304个小朋友围成若干个圆圈(一圈套一圈)做游戏,已知最里面的圈有24人,最外面的圈有52人,如果相邻两圈相差的人数相等,那么相邻两圈相差多少人?
6
查看更多