资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2.1 直线和圆的位置关系 同步练习
一、单选题
1、以下命题正确的是( )
A、圆的切线一定垂直于半径;
B、圆的内接平行四边形一定是正方形;
C、直角三角形的外心一定也是它的内心;
D、任何一个三角形的内心一定在这个三角形内
2、下列命题中,假命题的是( )
A、经过两点有且只有一条直线
B、平行四边形的对角线相等
C、两腰相等的梯形叫做等腰梯形
D、圆的切线垂直于经过切点的半径
3、在平面内,⊙O的半径为2cm,圆心O到直线l的距离为3cm,则直线l与⊙O的位置关系是( )
A、内含
B、相交
C、相切
D、相离
4、圆的直径为13cm,如果圆心与直线的距离是d,则( )
A、当d=8 cm,时,直线与圆相交
B、当d=4.5 cm时,直线与圆相离
C、当d=6.5 cm时,直线与圆相切
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D、当d=13 cm时,直线与圆相切
5、如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是( )
A、点(0,3)
B、点(2,3)
C、点(5,1)
D、点(6,1)
6、在平面直角坐标系中,以点(2,3)为圆心、3为半径的圆,一定( )
A、与x轴相切,与y轴相切
B、与x轴相切,与y轴相交
C、与x轴相交,与y轴相切
D、与x轴相交,与y轴相交
7、如图已知⊙O的半径为R,AB是⊙O的直径,D是AB延长线上一点, DC是⊙O的切线,C是切点,连结AC,若∠CAB=30° , 则BD的长为( )
A、R
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B、R
C、2R
D、R
8、如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R与小圆半径r之间的关系满足( )
A、R=2r
B、R=3r
C、R=r
D、R=r
9、在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,以点C为圆心,5cm为半径的⊙C与边AB的位置关系是( ).
A、外离
B、相切
C、相交
D、相离
10、P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是( )
A、4
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B、8
C、12
D、不能确定
11、已知⊙O是以原点为圆心,为半径的圆,点P是直线上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )
A、3
B、4
C、
D、
12、如图所示,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为( )
A、15°
B、30°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C、60°
D、90°
13、如图,直线AB、CD、BC分别与⊙O相切于E、F、G,且AB∥CD,若OB=6cm,0C=8cm,则BE+CG的长等于( )
A、13
B、12
C、11
D、10
14、如图,⊙O是△ABC的内切圆,点D、E分别为边AC、BC上的点,且DE为⊙O的切线,若△ABC的周长为25,BC的长是9,则△ADE的周长是( )
A、7
B、8
C、9
D、16
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15、如图,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若AB=10,BC=4,则AD的长( )
A、4
B、5
C、6
D、7
二、填空题
16、在Rt△ABC中,∠C=90,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的关系是________.
17、已知⊙O的半径为R,点O到直线m的距离为d,R、d是方程x2-4x+a=0的两根,当直线m与⊙O相切时,a=________.
18、如图,⊙O是四边形ABCD的内切圆,切点分别为E、F、G、H,已知AB=5,CD=7,那么AD+BC= ________.
19、如图,直线AB、CD相交于点O,∠AOC=30°,半径为1cm的⊙P的圆心在直线AB上,且与点O的距离为6cm.如果⊙P以1cm∕s的速度,沿由A向B的方向移动,那么 ________秒种后⊙P与直线CD相切.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20、如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为________
三、解答题
21、如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为6,BC=8,求弦BD的长.
22、如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)求证:AB为⊙O的切线;
(2)求弦AC的长;
(3)求图中阴影部分的面积.
23、如图,AB是⊙O的弦,AC与⊙O相切于点A,且∠BAC=52°.
(1)求∠OBA的度数;
(2)求∠D的度数.
24、如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,分别交PA、PB于点C、D.若PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,求△PCD的周长.
25、如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.
(1)求证:AB=BE;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)若PA=2,cosB=, 求⊙O半径的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案部分
一、单选题
1、
【答案】D
2、
【答案】B
3、
【答案】D
4、
【答案】C
5、
【答案】C
6、
【答案】B
7、
【答案】A
8、
【答案】A
9、
【答案】C
10、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】B
11、
【答案】B
12、
【答案】B
13、
【答案】D
14、
【答案】A
15、
【答案】C
二、填空题
16、
【答案】相切
17、
【答案】4
18、
【答案】12
19、
【答案】4或8
20、
【答案】(, 2)或(﹣, 2)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题
21、
【答案】(1)证明:连接OB,如图所示:
∵E是弦BD的中点,
∴BE=DE,OE⊥BD,=,
∴∠BOE=∠A,∠OBE+∠BOE=90°,
∵∠DBC=∠A,
∴∠BOE=∠DBC,
∴∠OBE+∠DBC=90°,
∴∠OBC=90°,
即BC⊥OB,
∴BC是⊙O的切线;
(2)解:∵OB=6,BC=8,BC⊥OB,
∴OC==10,
∵△OBC的面积=OC•BE=OB•BC,
∴BE===4.8,
∴BD=2BE=9.6,
即弦BD的长为9.6.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22、
【答案】(1)证明:如图,连接OA.
∵AB=AC,∠ABC=30°,
∴∠ABC=∠ACB=30°.
∴∠AOB=2∠ACB=60°,
∴在△ABO中,∠BAO=180°-∠ABO-∠AOB=90°,即AB⊥OA,
又∵OA是⊙O的半径,
∴AB为⊙O的切线;
(2)解:如图,连接AD.
∵CD是⊙O的直径,
∴∠DAC=90°.
∵由(1)知,∠ACB=30°,
∴AD=CD=4,
则根据勾股定理知AC==,即弦AC的长是
(3)由(2)知,在△ADC中,∠DAC=90°,AD=4,AC=,
则S△ADC=AD•AC=×4×=.
∵点O是△ADC斜边上的中点,
∴S△AOC=S△ADC=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
根据图示知,S阴影=S扇形ADO+S△AOC=,
即图中阴影部分的面积是.
23、
【答案】解:(1)连接OA,
∵AC与⊙O相切于点A,
∴OA⊥AC,
∴∠OAC=90°,
∵∠BAC=52°,
∴∠OAB=38°,
∵OA=OB,
∴∠OBA=∠OAB=38°;
(2)∵∠OBA=∠OAB=38°,
∴∠AOB=180°﹣2×38°=104°,
∴∠D=∠AOB=52°.
24、
【答案】解:∵PA、PB的长是关于x的一元二次方程x2﹣mx+m﹣1=0的两个根,
∴PA+PB=m,PA•PB=m﹣1,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵PA、PB切⊙O于A、B两点,
∴PA=PB=,
即•=m﹣1,
即m2﹣4m+4=0,
解得:m=2,
∴PA=PB=1,
∵PA、PB切⊙O于A、B两点,CD切⊙O于点E,
∴AD=ED,BC=EC,
∴△PCD的周长为:PD+CD+PC=PD+DE+EC+PC=PD+AD+BC+PC=PA+PB=2.
25、
【答案】(1)证明:连接OD,
∵PD切⊙O于点D,
∴OD⊥PD,
∵BE⊥PC,
∴OD∥BE,
∴ADO=∠E,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠E,
∴AB=BE;
(2)解:由(1)知,OD∥BE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠POD=∠B,
∴cos∠POD=cosB=,
在Rt△POD中,cos∠POD==,
∵OD=OA,PO=PA+OA=2+OA,
∴=,
∴OA=3,
∴⊙O半径=3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
查看更多