返回

资料详情(天天资源网)

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

资料简介

三角函数与解三角形 热点一 三角函数的图象和性质 注意对基本三角函数y=sin x,y=cos x的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.‎ ‎【例1】已知函数f(x)=sin x-2sin2.‎ ‎(1)求f(x)的最小正周期;‎ ‎(2)求f(x)在区间上的最小值.‎ ‎(1)解 因为f(x)=sin x+cos x-.‎ ‎=2sin-.‎ 所以f(x)的最小正周期为2π.‎ ‎(2)解 因为0≤x≤,所以≤x+≤π.‎ 当x+=π,即x=时,f(x)取得最小值.‎ 所以f(x)在区间上的最小值为f=-.‎ ‎【类题通法】求函数y=Asin(ωx+φ)+B周期与最值的模板 第一步:三角函数式的化简,一般化成y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h的形式;‎ 第二步:由T=求最小正周期;‎ 第三步:确定f(x)的单调性;‎ 第四步:确定各单调区间端点处的函数值;‎ 第五步:明确规范地表达结论.‎ ‎【对点训练】设函数f(x)=-sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为.‎ ‎(1)求ω的值;‎ ‎(2)求f(x)在区间上的最大值和最小值.‎ 解 (1)f(x)=-sin2ωx-sin ωxcos ωx ‎=-·-sin 2ωx ‎=cos 2ωx-sin 2ωx=-sin.‎ 因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故该函数的周期T=4×=π.又ω>0,所以=π,因此ω=1.‎ ‎(2)由(1)知f(x)=-sin.设t=2x-,则函数f(x)可转化为y=-sin t.‎ 当π≤x≤时,≤t=2x-≤ ,‎ 如图所示,作出函数y=sin t在 上的图象,‎ 由图象可知,当t∈时,sin t∈,‎ 故-1≤-sin t≤,因此-1≤f(x)=-sin≤.‎ 故f(x)在区间上的最大值和最小值分别为,-1.‎ 热点二 解三角形 高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.‎ ‎【例2】在△ABC中,角A,B,C所对的边分别为a,b,c,f(x)=2sin(x-A)cos x+sin(B+C)(x∈R),函数f(x)的图象关于点对称.‎ ‎(1)当x∈时,求函数f(x)的值域;‎ ‎(2)若a=7,且sin B+sin C=,求△ABC的面积.‎ 解 (1)∵f(x)=2sin(x-A)cos x+sin(B+C)‎ ‎=2(sin xcos A-cos xsin A)cos x+sin A ‎=2sin xcos Acos x-2cos2xsin A+sin A ‎=sin 2xcos A-cos 2xsin A=sin(2x-A),‎ 又函数f(x)的图象关于点对称,‎ 则f=0,即sin=0,‎ 又A∈(0,π),则A=,‎ 则f(x)=sin.‎ 由于x∈,‎ 则2x-∈,‎ 即-b=,∴a+c∈(,2].‎ 即a+c的取值范围是(,2].‎ ‎【类题通法】向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.‎ ‎【对点训练】已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且y=f(x)的图象过点和点.‎ ‎(1)求m,n的值;‎ ‎(2)将y=f(x)的图象向左平移φ(0 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭
TOP