资料简介
三角函数与解三角形
热点一 三角函数的图象和性质
注意对基本三角函数y=sin x,y=cos x的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y=Asin(ωx+φ)的形式,然后利用整体代换的方法求解.
【例1】已知函数f(x)=sin x-2sin2.
(1)求f(x)的最小正周期;
(2)求f(x)在区间上的最小值.
(1)解 因为f(x)=sin x+cos x-.
=2sin-.
所以f(x)的最小正周期为2π.
(2)解 因为0≤x≤,
所以≤x+≤π.
当x+=π,即x=时,f(x)取得最小值.
所以f(x)在区间上的最小值为f=-.
【类题通法】求函数y=Asin(ωx+φ)+B周期与最值的模板
第一步:三角函数式的化简,一般化成y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h的形式;
第二步:由T=求最小正周期;
第三步:确定f(x)的单调性;
第四步:确定各单调区间端点处的函数值;
第五步:明确规范地表达结论.
【对点训练】 设函数f(x)=-sin2ωx-sin ωxcos ωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为.
(1)求ω的值;
(2)求f(x)在区间上的最大值和最小值.
解 (1)f(x)=-sin2ωx-sin ωxcos ωx
=-·-sin 2ωx
=cos 2ωx-sin 2ωx=-sin.
因为y=f(x)的图象的一个对称中心到最近的对称轴的距离为,故该函数的周期T=4×=π.
又ω>0,所以=π,因此ω=1.
(2)由(1)知f(x)=-sin.
设t=2x-,则函数f(x)可转化为y=-sin t.
当π≤x≤时,≤t=2x-≤ ,
如图所示,作出函数y=sin t在 上的图象,
由图象可知,当t∈时,sin t∈,
故-1≤-sin t≤,因此-1≤f(x)=-sin≤.
故f(x)在区间上的最大值和最小值分别为,-1.
热点二 解三角形
高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题.
【例2】在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.
(1)证明:sin Asin B=sin C;
(2)若b2+c2-a2=bc,求tan B.
(1)证明 在△ABC中,根据正弦定理,
可设===k(k>0).
则a=ksin A,b=ksin B,c=ksin C.
代入+=中,
有+=,变形可得
sin Asin B=sin Acos B+cos Asin B=sin(A+B).
在△ABC中,由A+B+C=π,
有sin(A+B)=sin(π-C)=sin C,
所以sin Asin B=sin C.
(2)解 由已知,b2+c2-a2=bc,根据余弦定理,有
cos A==.
所以sin A==.
由(1)知,sin Asin B=sin Acos B+cos Asin B,
所以sin B=cos B+sin B,
故tan B==4.
【类题通法】(1)①在等式中既有边长又有角的正余弦时,往往先联想正弦定理;②出现含有边长的平方及两边之积的等式,往往想到应用余弦定理.
(2)正余弦定理与两角和(差)角公式的活用是求解该类问题的关键.
【对点训练】 四边形ABCD的内角A与C互补,且AB=1,BC=3,CD=DA=2.
(1)求角C的大小和线段BD的长度;
(2)求四边形ABCD的面积.
解 (1)设BD=x,
在△ABD中,由余弦定理,得cos A=,
在△BCD中,由余弦定理,得cos C=,
∵A+C=π,∴cos A+cos C=0.
联立上式,解得x=,cos C=.
由于C∈(0,π).∴C=,BD=.
(2)∵A+C=π,C=,∴sin A=sin C=.
又四边形ABCD的面积SABCD=S△ABD+S△BCD
=AB·ADsin A+CB·CDsin C=×(1+3)=2,
∴四边形ABCD的面积为2.
热点三 三角函数与平面向量结合
三角函数、解三角形与平面向量的结合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.
【例3】已知△ABC的三内角A,B,C所对的边分别是a,b,c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大小;
(2)若b=,求a+c的范围.
解 (1)∵m=(cos B,cos C),n=(2a+c,b),且m⊥n,
∴(2a+c)cos B+bcos C=0,
∴cos B(2sin A+sin C)+sin Bcos C=0,
∴2cos Bsin A+cos Bsin C+sin Bcos C=0.
即2cos Bsin A=-sin(B+C)=-sin A.
∵A∈(0,π),∴sin A≠0,∴cos B=-.
∵0<B<π,∴B=.
(2)由余弦定理得
b2=a2+c2-2accosπ=a2+c2+ac=(a+c)2-ac≥(a+c)2-=(a+c)2,当且仅当a=c时取等号.
∴(a+c)2≤4,故a+c≤2.
又a+c>b=,∴a+c∈(,2].即a+c的取值范围是(,2].
【类题通法】向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.
【对点训练】 已知向量a=(m,cos 2x),b=(sin 2x,n),函数f(x)=a·b,且y=f(x)的图象过点和点.
(1)求m,n的值;
(2)将y=f(x)的图象向左平移φ(0
查看更多