资料简介
双井中学八年级(数学)备课组
集 体 备 课 教 案
主 备: 辅 备:
上课时间
年 月 日 (星期 )
本周第( )课时
总( )课时
上课教师
班 级
八年级( )班
课题:
《14.1.1 同底数幂的乘法 》
三维 目标
知识与技能
理解同底数幂的乘法法则
过程与方法
在进一步体会幂的意义时,发展推理能力和有条理的表达能力
情感态度与价值观
体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神
教学重点:正确理解同底数幂的乘法法则
教学难点:正确理解和应用同底数幂的乘法法则
教学方法与手段:透思探究教学法
教学过程:
一.提出问题,创设情境
复习an的意义:
an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.
(出示投影片)
提出问题:
(出示投影片)
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
[师]能否用我们学过的知识来解决这个问题呢?
[生]运算次数=运算速度×工作时间
所以计算机工作103秒可进行的运算次数为:1012×103.
[师]1012×103如何计算呢?
[生]根据乘方的意义可知
1012×103=×(10×10×10)==1015.
[师]很好,通过观察大家可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.
修订、增减
二.导入新课
1.做一做
出示投影片:
计算下列各式:
(1)25×22
(2)a3·a2
(3)5m·5n(m、n都是正整数)
你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.
[师]根据乘方的意义,同学们可以独立解决上述问题.
[生](1)25×22=(2×2×2×2×2)×(2×2)
=27=25+2.
因为25表示5个2相乘,;22表示2个2相乘,根据乘方的意义,同样道理可得
a3·a2=(a·a·a)·(a·a)=a5=a3+2.
5m·5n= ×=5m+n.
(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述).
[生]我们可以发现下列规律:
(一)这三个式子都是底数相同的幂相乘.
(二)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
2.议一议 am·an等于什么(m、n都是正整数)?为什么?
出示投影片
[师生共析]
am·an表示同底数幂的乘法.根据幂的意义可得:
am·an=·==am+n
于是有am·an=am+n(m、n都是正整数),用语言来描述此法则即为:
“同底数幂相乘,底数不变,指数相加”.
[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.
[生]am表示m个a相乘,an表示n个a相乘,am·an表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得am·an=am+n.
[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.
3.例题讲解
出示投影片
[例1]计算:
(1)x2·x5 (2)a·a6
(3)2×24×23 (4)xm·x3m+1
[例2]计算am·an·ap后,能找到什么规律?
[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?
[生1](1)、(2)、(4)可以直接用“同底数幂相乘,底数不变,指数相加”
的法则.
[生2](3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.
[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.
生板演:
(1)解:x2·x5=x2+5=x7.
(2)解:a·a6=a1·a6=a1+6=a7.
(3)解:2×24×23=21+4·23=25·23=25+3=28.
(4)解:xm·x3m+1=xm+(3m+1)=x4m+1.
[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.
解法一:am·an·ap=(am·an)·ap=am+n·ap=am+n+p;
解法二:am·an·ap=am·(an·ap)=am·an+p=am+n+p.
解法三:am·an·ap=··=am+n+p.
[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.
[师]是的,能不能用符号表示出来呢?
[生]am1·am2·…·amn=am1+m2+mn
[师]太棒了.那么例1中的第(3)题我们就可以直接应用法则运算了.
2×24×23=21+4+3=28.
三.随堂练习
1.课本P96练习
教师小结:
这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?在探索同底数幂乘法的性质时,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n(m、n是正整数).
布置作业
课本P104习题14.1第1题(1)、(2),第2题(1)
板书设计:
14.1.1 同底数幂的乘法
同底数幂的乘法法则:
同底数幂相乘,底数不变,指数相加.即am·an=am+n(m、n都是正整数)
例题讲解:(由学生板演)
教学反思:
查看更多