返回

资料详情(天天资源网)

资料简介

人教版数学九年级上册专项培优练习九《二次函数实际应用》一、选择题1.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为()A.y=36(1﹣x)B.y=36(1+x)C.y=18(1﹣x)2D.y=18(1+x2)2.已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式是()A.y=﹣x2+5xB.y=﹣x2+10xC.y=x2+5xD.y=x2+10x3.某工厂第一年的利润为20万元,第三年的利润为y万元.设该公司利润的平均年增长率为x,则y关于x的二次函数的表达式为().A.y=20(1﹣x)2B.y=20(1+x)2C.y=(1﹣x)2+2D.y=(1﹣x)2﹣204.某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3m,此时距喷水管的水平距离为m,如图所示,这个喷泉喷出水流轨迹的函数解析式是(  )A.y=-3(x-)2+3  B.y=-3(x+)2+3C.y=-12(x-)2+3  D.y=-12(x+)2+35.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x,降价后价格为y元,原价为a元,则y关于x的二次函数表达式为().A.y=2a(x-1)B.y=2a(1-x)C.y=a(1-x2)D.y=a(1-x)26.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是(  ) A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x27.如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为(  )A.y=5-x  B.y=5-x2  C.y=25-x  D.y=25-x28.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么卖出商品所赚钱y元与售价x元之间的函数关系为()A.y=-10x2-560x+7350B.y=-10x2+560x-7350C.y=-10x2+350xD.y=-10x2+350x-73509.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE所在抛物线的解析式为(  )A.y=(x+3)2  B.y=(x-3)2C.y=-(x+3)2  D.y=-(x-3)210.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2 +14n-24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月11.已知学校航模组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数表达式h=﹣t2+24t+1.则下列说法中正确的是(   )A.点火后9s和点火后13s的升空高度相同B.点火后24s火箭落于地面C.点火后10s的升空高度为139mD.火箭升空的最大高度为145m12.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m.其中正确结论的个数是(  )A.1 B.2C.3D.4二、填空题13.如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,则菜园的面积y(单位:米2)与x(单位:米)的函数关系式为      (不要求写出自变量x的取值范围).14. 长方形的周长为24cm,其中一边为x(其中x>0),面积为ycm,则这样的长方形中y与x的关系可以写为.15.某隧道横截面由抛物线与矩形的三边组成,尺寸如图所示.以隧道横截面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求得该抛物线对应的函数关系式为.16.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x(x>0),十二月份的快递件数为y万件,那么y关于x的函数解析式是 .17.某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50m),中间用两道墙隔开(如图),已知计划中的建筑材料可建墙的总长度为48m,则这三间长方形种牛饲养室的总占地面积的最大值为m2.18.游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(单位:万元),且y=ax2+bx,若维修保养费用第1个月为2万元,第2个月为4万元;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(单位:万元),g也是关于x的二次函数.(1)y关于x的解析式;(2)纯收益g关于x的解析式;(3)设施开放个月后,游乐场纯收益达到最大?个月后,能收回投资?三、解答题19.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只) 甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?20.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少?21.如图,隧道的截图由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线可以用y=-x2+4表示.一辆货运卡车高4m,宽2m,它能通过该隧道吗? 22.如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A开始沿边AB向B以2cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4cm/s的速度移动(不与点C重合).如果P、Q分别从A.B同时出发,设运动的时间为xs,四边形APQC的面积为ycm2.(1)求y与x之间的函数关系式;(2)求自变量x的取值范围;(3)四边形APQC的面积能否等于172cm2.若能,求出运动的时间;若不能,说明理由.23.某工厂生产的A种产品,它的成本是2元,售价是3元,年销量为100万件,为了获得更好的效益,厂家准备拿出一定的资金做广告;根据统计,每年投入的广告费是x(十万元),产品的年销量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:x(十万元)012y11.51.8(1)求y与x的函数关系式;(2)如果把利润看着销售总额减去成本费和广告费,试写出年利润S(十万元)与广告费x(十万元的函数关系式);(3)如果投入的年广告费为10万元~30万元,问广告费在什么范围内,工厂获得的利润最大?最大利润是多少? 24.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为  元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款? 参考答案1.C2.A3.B4.C5.D6.C7.D8.B9.B10.C11.D12.B13.答案为:y=﹣x2+15x.14.答案为:y=(12﹣x)x.15.答案为:y=-x2.16.答案为:y=10(1+x)217.答案为:144.18.答案为:(1)y=x2+x;(2)纯收益g=33x-150-(x2+x)=-x2+32x-150(3)g=-x2+32x-150=-(x-16)2+106,即设施开放16个月后游乐场的纯收益达到最大.又在0 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭