返回

资料详情(天天资源网)

资料简介

格致课堂人教A版第二册第十章概率小结与回顾一、选择题1.在一次随机试验中,三个事件,,的概率分别为0.2,0.3,0.5,则下列说法正确的个数是()①与是互斥事件,也是对立事件;②是必然事件;③;④.A.4B.1C.2D.3【答案】B【解析】三个事件,,不一定是互斥事件,故,,;与不一定是互斥事件,也不一定是对立事件.④正确.2.经统计,某储蓄所一个营业窗口等候的人数及相应的概率如表:排队人数012345人及以上概率.10.160.30.30.10.04则至少3人排队等候的概率是()A.0.44B.0.56C.0.86D.0.14 格致课堂【答案】A【解析】设至少3人排队等候为事件,则有故选:3.《史记》中讲述了田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上、中、下等马各1匹,从中随机选1匹进行1场比赛,则齐王的马获胜的概率为()A.B.C.D.【答案】A【解析】依题意,记田忌的上等马、中等马、下等马分别为,,,齐王的上等马、中等马、下等马分别为,,.由题意可知,可能的比赛为,,,,,,,,,共9种,其中田忌可以获胜的事件为,,,共3种,则齐王的马获胜的概率.4.某城市有连接8个小区、、、、、、、和市中心的整齐方格形道路网,每个小方格均为正方形,如图所示,某人从道路网中随机地选择一条最短路径,由小区前往小区,则他经过市中心的概率是()A.B.C.D.【答案】B【解析】此人从小区A前往H的所有最短路径为:A→G→O→H,A→E→O→H,A→E→D→H,共3条.记“此人经过市中心O”为事件M,则M包含的基本事件为:A→G→O→H,A→E→O→H,共2条.∴,即他经过市中心的概率为,故选B.5.(多选题)下列有关古典概型的四种说法:A.试验中所有可能出现的样本点只有有限个;B.每个事件出现的可能性相等;C.每个样本点出现的可能性相等; 格致课堂D.已知样本点总数为,若随机事件包含个样本点,则事件发生的概率.其中正确的是【答案】ACD【解析】B中所说的事件不一定是样本点,所以B不正确;根据古典概型的特点及计算公式可知ACD正确.6.(多选题)下列各对事件中,为相互独立事件的是()A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”C.袋中有3白、2黑共5个大小相同的小球,依次不放同地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”【答案】ABD【解析】在A中,样本空间,事件,事件,事件,∴,,,即,故事件M与N相互独立,A正确.在B中,根据事件的特点易知,事件M是否发生对事件发生的概率没有影响,故M与N是相互独立事件,B正确;在C中,由于第1次摸到球不放回,因此会对第2次摸到球的概率产生影响,因此不是相互独立事件,C错误;在D中,从甲组中选出1名男生与从乙组中选出1名女生这两个事件的发生没有影响,所以它们是相互独立事件,D正确.故选:ABD.二、填空题7.下列说法:①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;②百分率是频率,但不是概率;③频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确的是______________.【答案】①③④【解析】对于①,由频率和概率概念: 格致课堂频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小.可知①正确;对于②,概率也可以用百分率表示,故②错误.对于③,频率与试验次数相关,而概率与试验次数无关,所以③正确;对于④,对于不同批次的试验,频率不一定相同,但概率相同,因而频率是概率的近似值,概率是频率的稳定值,所以④正确.由概率和频率的定义中可知①③④正确.8.袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到”和””平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:232321230023123021132220011203331100231130133231031320122103233221020132由此可以估计,恰好第三次就停止的概率为_____.【答案】【解析】由题意知满足条件的随机数组中,前两次抽取的数中,含0与1不能同时出现,出现0就不能出现1,出现1就不能出现0,第三次必须出现前两个数字中没有出现的1或0,即符合条件的数组只有3组,分别为:021,130,031,∴恰好第三次就停止的概率为p.9.一个三位自然数百位,十位,个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若,且a,b,c互不相同,则这个三位数为”有缘数”的概率是__________.【答案】【解析】由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个;由2,3,4组成的三位自然数也是6个.所以共有6+6+6+6=24个.由1,2,3组成的三位自然数,共6个”有缘数”.由1,3,4组成的三位自然数,共6个”有缘数”. 格致课堂所以三位数为”有缘数”的概率.10.某学校进行足球选拔赛,有甲、乙、丙、丁四个球队,每两队要进行一场比赛,开始记分规则为:胜一场得3分,平一场得1分,负一场得0分,甲胜乙、丙、丁的概率分别是0.5、0.6、0.8,甲负乙、丙、丁的概率分别是0.3、0.2、0.1,最后得分大于等于7胜出,则甲胜出的概率为________.【答案】0.446【解析】两人比赛,一人胜、平、负是互斥事件,因此由题意甲平乙、丙、丁的概率分别是0.2、0.2、0.1,所以甲胜的概率为.三、解答题11.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.项目员工ABCDEF子女教育○○×○×○继续教育××○×○○大病医疗×××○××住房贷款利息○○××○○住房租金××○×××赡养老人○○×××○(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.①试用所给字母列举出所有可能的抽取结果;②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率. 格致课堂【答案】(1)从老、中、青员工中分别抽取6人,9人,10人(2)①,,,,,,,,,,,共11种②【解析】(1)由已知,老、中、青员工人数之比为,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2)①从已知的6人中随机抽取2人的所有可能结果为,,,,,,,,,,,,,,,共15种.②由题中表格知,符合题意的所有可能结果为,,,,,,,,,,,共11种.所以,事件M发生的概率.12.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.【答案】(Ⅰ)0.006;(Ⅱ);(Ⅲ)【解析】(Ⅰ)因为,所以……..4分)(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为………8分(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×40=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是 格致课堂又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭