返回

资料详情(天天资源网)

资料简介

七年级数学上册《有理数》复习知识点1.1  正数与负数。①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)。 ②负数:负数指小于0的实数。如−3。负数是同绝对值正数的相反数。如-3是3的相反数。任何正数前加上一个负号都等于负数。在数轴线上,负数都在0的左侧,所有负数都比自然数小。负数用负号“-”标记,如−2,−5.33,−45,−0.6等。一个代数式前面带上负号后,并不一定是负数。数负号个数定正负。奇数个负号为负,偶数个负号为正。-(-3)为正。③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。1.2.1.有理数(1)整数:正整数、0、负整数统称整数,(2)分数:正分数和负分数统称分数。(3)有理数;整数和分数统称有理数。 以用m/n(其中m、n是整数,n≠0)表示有理数。1.2. 2.数轴:通常用一条直线上的点表示数,这条直线叫数轴。数轴三要素:原点、正方向、单位长度。原点:在直线上任取一个点表示数0,这个点叫做原点。数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。1.2.3相反数:只有符号不同的两个数叫做互为相反数。1.2.4绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,在数轴上表示一个数的点离开原点的距离就叫做这个数的绝对值。 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。式子|a|=? 若a大于0,则a的绝对值等于a;若a等于0,则a的绝对值等于0;若a小于0,则a的绝对值等于-a。性质:绝对值有非负性,即|a|≥0。有理数比大小:数轴上的两个数,右边的数总比左边的数大。互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么的倒数是a分之一;若ab=1Ûa、b互为倒数;若ab=-1Ûa、b互为负倒数。1.3  有理数的加减法①有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。3.一个数同0相加,仍得这个数。加法的交换律和结合律。②有理数减法法则:减去一个数,等于加这个数的相反数。有理数的加减法统一成加法运算,在进行有理数加法运算时,一般采取:1.是互为相反数的先加(抵消);2.同号的先加;3.同分母的先加;4.能凑整数的先加;5.异分母分数相加,先通分,再计算。记忆口诀:有理加法不含糊,同号异号分清楚;如果两数号相同,绝对相加号相从;如果两数号相异,大绝来把小绝去,结果符号大绝替。1.4  有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。乘积是1的两个数互为倒数。乘法交换律、结合律、分配律。②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。1.5 有理数的乘方求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。把一个大于10的数表示成科学计数法的形式,注意因数a的范围为1≤a 查看更多

Copyright 2004-2019 ttzyw.com All Rights Reserved 闽ICP备18023965号-4

天天资源网声明:本站点发布的文章作品均来自用户投稿或网络整理,部分作品未联系到知识产权人或未发现有相关的知识产权登记

全屏阅读
关闭