资料简介
1.3函数的基本性质——最大(小)值
复习引入问题1函数f(x)=x2.在(-∞,0]上是减函数,在[0,+∞)上是增函数.当x≤0时,f(x)≥f(0),x≥0时,f(x)≥f(0).从而x∈R,都有f(x)≥f(0).因此x=0时,f(0)是函数值中的最小值.
复习引入问题2函数f(x)=-x2.同理可知x∈R,都有f(x)≤f(0).即x=0时,f(0)是函数值中的最大值.
函数最大值概念:讲授新课
函数最大值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:讲授新课
函数最大值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意x∈I,都有f(x)≤M.讲授新课
函数最大值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意x∈I,都有f(x)≤M.(2)存在x0∈I,使得f(x0)=M.讲授新课
函数最大值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意x∈I,都有f(x)≤M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.讲授新课
函数最小值概念:讲授新课
函数最小值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:讲授新课
函数最小值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意x∈I,都有f(x)≥M.讲授新课
函数最小值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意x∈I,都有f(x)≥M.(2)存在x0∈I,使得f(x0)=M.讲授新课
函数最小值概念:一般地,设函数y=f(x)的定义域为I.如果存在实数M,满足:(1)对于任意x∈I,都有f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最小值.讲授新课
例1设f(x)是定义在区间[-6,11]上的函数.如果f(x)在区间[-6,-2]上递减,在区间[-2,11]上递增,画出f(x)的一个大致的图象,从图象上可以发现f(-2)是函数f(x)的一个.讲授新课
求函数的最大值和最小值.例2已经知函数y=(x∈[2,6]),讲授新课
y21246135xO讲授新课求函数的最大值和最小值.例2已经知函数y=(x∈[2,6]),
例3已知函数f(x)=(Ⅰ)当a=(Ⅱ)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.x∈[1,+∞).讲授新课
利用函数单调性判断函数的最大(小)值的方法1.利用二次函数的性质(配方法)求函数的最大(小)值2.利用图象求函数的最大(小)值3.利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,则函数y=f(x)在x=a处有最小值f(a),在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
课堂练习1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是()A、a≥3B、a≤3C、a≥-3D、a≤-3D2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上递减,在[-2,+∞)上递增,则f(x)在[1,2]上的值域____________.[21,39]
1.最值的概念;课堂小结
1.最值的概念;课堂小结2.应用图象和单调性求最值的一般步骤.
1.阅读教材P.30-P.32;2.课后作业《习案》:作业10.
思考题:1.已知函数f(x)=x2-2x-3,若x∈[t,t+2]时,求函数f(x)的最值.
思考题:1.已知函数f(x)=x2-2x-3,若x∈[t,t+2]时,求函数f(x)的最值.2.已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,(1)求证f(x)是R上的减函数;(2)求f(x)在[-3,3]上的最大值和最小值.f(x)<0,f(1)=
查看更多